Solve for x
x = \frac{167}{4} = 41\frac{3}{4} = 41.75
Graph
Share
Copied to clipboard
\left(45-x\right)\left(30-37\right)=\left(x-40\right)\left(37-50\right)
Variable x cannot be equal to any of the values 40,45 since division by zero is not defined. Multiply both sides of the equation by \left(x-45\right)\left(x-40\right), the least common multiple of 40-x,x-45.
\left(45-x\right)\left(-7\right)=\left(x-40\right)\left(37-50\right)
Subtract 37 from 30 to get -7.
-315+7x=\left(x-40\right)\left(37-50\right)
Use the distributive property to multiply 45-x by -7.
-315+7x=\left(x-40\right)\left(-13\right)
Subtract 50 from 37 to get -13.
-315+7x=-13x+520
Use the distributive property to multiply x-40 by -13.
-315+7x+13x=520
Add 13x to both sides.
-315+20x=520
Combine 7x and 13x to get 20x.
20x=520+315
Add 315 to both sides.
20x=835
Add 520 and 315 to get 835.
x=\frac{835}{20}
Divide both sides by 20.
x=\frac{167}{4}
Reduce the fraction \frac{835}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}