Solve for x
x=41
Graph
Share
Copied to clipboard
\left(45-x\right)\left(30-34\right)=\left(x-40\right)\left(34-50\right)
Variable x cannot be equal to any of the values 40,45 since division by zero is not defined. Multiply both sides of the equation by \left(x-45\right)\left(x-40\right), the least common multiple of 40-x,x-45.
\left(45-x\right)\left(-4\right)=\left(x-40\right)\left(34-50\right)
Subtract 34 from 30 to get -4.
-180+4x=\left(x-40\right)\left(34-50\right)
Use the distributive property to multiply 45-x by -4.
-180+4x=\left(x-40\right)\left(-16\right)
Subtract 50 from 34 to get -16.
-180+4x=-16x+640
Use the distributive property to multiply x-40 by -16.
-180+4x+16x=640
Add 16x to both sides.
-180+20x=640
Combine 4x and 16x to get 20x.
20x=640+180
Add 180 to both sides.
20x=820
Add 640 and 180 to get 820.
x=\frac{820}{20}
Divide both sides by 20.
x=41
Divide 820 by 20 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}