Evaluate
-11
Factor
-11
Share
Copied to clipboard
\frac{30-\left(\frac{14}{18}+\frac{15}{18}-\frac{11}{12}\right)\left(-36\right)}{-5}
Least common multiple of 9 and 6 is 18. Convert \frac{7}{9} and \frac{5}{6} to fractions with denominator 18.
\frac{30-\left(\frac{14+15}{18}-\frac{11}{12}\right)\left(-36\right)}{-5}
Since \frac{14}{18} and \frac{15}{18} have the same denominator, add them by adding their numerators.
\frac{30-\left(\frac{29}{18}-\frac{11}{12}\right)\left(-36\right)}{-5}
Add 14 and 15 to get 29.
\frac{30-\left(\frac{58}{36}-\frac{33}{36}\right)\left(-36\right)}{-5}
Least common multiple of 18 and 12 is 36. Convert \frac{29}{18} and \frac{11}{12} to fractions with denominator 36.
\frac{30-\frac{58-33}{36}\left(-36\right)}{-5}
Since \frac{58}{36} and \frac{33}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{30-\frac{25}{36}\left(-36\right)}{-5}
Subtract 33 from 58 to get 25.
\frac{30-\frac{25\left(-36\right)}{36}}{-5}
Express \frac{25}{36}\left(-36\right) as a single fraction.
\frac{30-\frac{-900}{36}}{-5}
Multiply 25 and -36 to get -900.
\frac{30-\left(-25\right)}{-5}
Divide -900 by 36 to get -25.
\frac{30+25}{-5}
The opposite of -25 is 25.
\frac{55}{-5}
Add 30 and 25 to get 55.
-11
Divide 55 by -5 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}