Evaluate
\frac{12530\sqrt{2}}{39}\approx 454.36143427
Share
Copied to clipboard
\frac{10}{21}\times \frac{96\times 65+25}{65}\sqrt{98}
Reduce the fraction \frac{30}{63} to lowest terms by extracting and canceling out 3.
\frac{10}{21}\times \frac{6240+25}{65}\sqrt{98}
Multiply 96 and 65 to get 6240.
\frac{10}{21}\times \frac{6265}{65}\sqrt{98}
Add 6240 and 25 to get 6265.
\frac{10}{21}\times \frac{1253}{13}\sqrt{98}
Reduce the fraction \frac{6265}{65} to lowest terms by extracting and canceling out 5.
\frac{10\times 1253}{21\times 13}\sqrt{98}
Multiply \frac{10}{21} times \frac{1253}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{12530}{273}\sqrt{98}
Do the multiplications in the fraction \frac{10\times 1253}{21\times 13}.
\frac{1790}{39}\sqrt{98}
Reduce the fraction \frac{12530}{273} to lowest terms by extracting and canceling out 7.
\frac{1790}{39}\times 7\sqrt{2}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
\frac{1790\times 7}{39}\sqrt{2}
Express \frac{1790}{39}\times 7 as a single fraction.
\frac{12530}{39}\sqrt{2}
Multiply 1790 and 7 to get 12530.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}