Evaluate
\frac{10687}{2790}\approx 3.83046595
Factor
\frac{10687}{2 \cdot 5 \cdot 31 \cdot 3 ^ {2}} = 3\frac{2317}{2790} = 3.8304659498207885
Share
Copied to clipboard
\frac{3}{10}+\frac{30}{12.4}+\frac{40}{36}
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
\frac{3}{10}+\frac{300}{124}+\frac{40}{36}
Expand \frac{30}{12.4} by multiplying both numerator and the denominator by 10.
\frac{3}{10}+\frac{75}{31}+\frac{40}{36}
Reduce the fraction \frac{300}{124} to lowest terms by extracting and canceling out 4.
\frac{93}{310}+\frac{750}{310}+\frac{40}{36}
Least common multiple of 10 and 31 is 310. Convert \frac{3}{10} and \frac{75}{31} to fractions with denominator 310.
\frac{93+750}{310}+\frac{40}{36}
Since \frac{93}{310} and \frac{750}{310} have the same denominator, add them by adding their numerators.
\frac{843}{310}+\frac{40}{36}
Add 93 and 750 to get 843.
\frac{843}{310}+\frac{10}{9}
Reduce the fraction \frac{40}{36} to lowest terms by extracting and canceling out 4.
\frac{7587}{2790}+\frac{3100}{2790}
Least common multiple of 310 and 9 is 2790. Convert \frac{843}{310} and \frac{10}{9} to fractions with denominator 2790.
\frac{7587+3100}{2790}
Since \frac{7587}{2790} and \frac{3100}{2790} have the same denominator, add them by adding their numerators.
\frac{10687}{2790}
Add 7587 and 3100 to get 10687.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}