Evaluate
\frac{\sqrt{7482090}}{3950}+1.6\approx 2.292491375
Share
Copied to clipboard
\frac{32}{20}+\frac{1.2}{2}\sqrt{1+\frac{7.87}{23.7}}
Expand \frac{3.2}{2} by multiplying both numerator and the denominator by 10.
\frac{8}{5}+\frac{1.2}{2}\sqrt{1+\frac{7.87}{23.7}}
Reduce the fraction \frac{32}{20} to lowest terms by extracting and canceling out 4.
\frac{8}{5}+\frac{12}{20}\sqrt{1+\frac{7.87}{23.7}}
Expand \frac{1.2}{2} by multiplying both numerator and the denominator by 10.
\frac{8}{5}+\frac{3}{5}\sqrt{1+\frac{7.87}{23.7}}
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
\frac{8}{5}+\frac{3}{5}\sqrt{1+\frac{787}{2370}}
Expand \frac{7.87}{23.7} by multiplying both numerator and the denominator by 100.
\frac{8}{5}+\frac{3}{5}\sqrt{\frac{2370}{2370}+\frac{787}{2370}}
Convert 1 to fraction \frac{2370}{2370}.
\frac{8}{5}+\frac{3}{5}\sqrt{\frac{2370+787}{2370}}
Since \frac{2370}{2370} and \frac{787}{2370} have the same denominator, add them by adding their numerators.
\frac{8}{5}+\frac{3}{5}\sqrt{\frac{3157}{2370}}
Add 2370 and 787 to get 3157.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{3157}}{\sqrt{2370}}
Rewrite the square root of the division \sqrt{\frac{3157}{2370}} as the division of square roots \frac{\sqrt{3157}}{\sqrt{2370}}.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{3157}\sqrt{2370}}{\left(\sqrt{2370}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3157}}{\sqrt{2370}} by multiplying numerator and denominator by \sqrt{2370}.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{3157}\sqrt{2370}}{2370}
The square of \sqrt{2370} is 2370.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{7482090}}{2370}
To multiply \sqrt{3157} and \sqrt{2370}, multiply the numbers under the square root.
\frac{8}{5}+\frac{3\sqrt{7482090}}{5\times 2370}
Multiply \frac{3}{5} times \frac{\sqrt{7482090}}{2370} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{5}+\frac{\sqrt{7482090}}{5\times 790}
Cancel out 3 in both numerator and denominator.
\frac{8\times 790}{5\times 790}+\frac{\sqrt{7482090}}{5\times 790}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 5\times 790 is 5\times 790. Multiply \frac{8}{5} times \frac{790}{790}.
\frac{8\times 790+\sqrt{7482090}}{5\times 790}
Since \frac{8\times 790}{5\times 790} and \frac{\sqrt{7482090}}{5\times 790} have the same denominator, add them by adding their numerators.
\frac{6320+\sqrt{7482090}}{5\times 790}
Do the multiplications in 8\times 790+\sqrt{7482090}.
\frac{6320+\sqrt{7482090}}{3950}
Expand 5\times 790.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}