Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-6\right)\left(3-x\right)=-3\times 2x
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-3\right), the least common multiple of 3,6-2x.
12x-2x^{2}-18=-3\times 2x
Use the distributive property to multiply 2x-6 by 3-x and combine like terms.
12x-2x^{2}-18=-6x
Multiply -3 and 2 to get -6.
12x-2x^{2}-18+6x=0
Add 6x to both sides.
18x-2x^{2}-18=0
Combine 12x and 6x to get 18x.
-2x^{2}+18x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 18 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Square 18.
x=\frac{-18±\sqrt{324+8\left(-18\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-18±\sqrt{324-144}}{2\left(-2\right)}
Multiply 8 times -18.
x=\frac{-18±\sqrt{180}}{2\left(-2\right)}
Add 324 to -144.
x=\frac{-18±6\sqrt{5}}{2\left(-2\right)}
Take the square root of 180.
x=\frac{-18±6\sqrt{5}}{-4}
Multiply 2 times -2.
x=\frac{6\sqrt{5}-18}{-4}
Now solve the equation x=\frac{-18±6\sqrt{5}}{-4} when ± is plus. Add -18 to 6\sqrt{5}.
x=\frac{9-3\sqrt{5}}{2}
Divide -18+6\sqrt{5} by -4.
x=\frac{-6\sqrt{5}-18}{-4}
Now solve the equation x=\frac{-18±6\sqrt{5}}{-4} when ± is minus. Subtract 6\sqrt{5} from -18.
x=\frac{3\sqrt{5}+9}{2}
Divide -18-6\sqrt{5} by -4.
x=\frac{9-3\sqrt{5}}{2} x=\frac{3\sqrt{5}+9}{2}
The equation is now solved.
\left(2x-6\right)\left(3-x\right)=-3\times 2x
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-3\right), the least common multiple of 3,6-2x.
12x-2x^{2}-18=-3\times 2x
Use the distributive property to multiply 2x-6 by 3-x and combine like terms.
12x-2x^{2}-18=-6x
Multiply -3 and 2 to get -6.
12x-2x^{2}-18+6x=0
Add 6x to both sides.
18x-2x^{2}-18=0
Combine 12x and 6x to get 18x.
18x-2x^{2}=18
Add 18 to both sides. Anything plus zero gives itself.
-2x^{2}+18x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+18x}{-2}=\frac{18}{-2}
Divide both sides by -2.
x^{2}+\frac{18}{-2}x=\frac{18}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-9x=\frac{18}{-2}
Divide 18 by -2.
x^{2}-9x=-9
Divide 18 by -2.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-9+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-9+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{45}{4}
Add -9 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{45}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{3\sqrt{5}}{2} x-\frac{9}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
x=\frac{3\sqrt{5}+9}{2} x=\frac{9-3\sqrt{5}}{2}
Add \frac{9}{2} to both sides of the equation.