Solve for x
x=\frac{2\sqrt{31}-23}{15}\approx -0.790964752
x=\frac{-2\sqrt{31}-23}{15}\approx -2.275701915
Graph
Share
Copied to clipboard
3-x=\left(x+1\right)\left(x+2\right)\times 15
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+2\right).
3-x=\left(x^{2}+3x+2\right)\times 15
Use the distributive property to multiply x+1 by x+2 and combine like terms.
3-x=15x^{2}+45x+30
Use the distributive property to multiply x^{2}+3x+2 by 15.
3-x-15x^{2}=45x+30
Subtract 15x^{2} from both sides.
3-x-15x^{2}-45x=30
Subtract 45x from both sides.
3-46x-15x^{2}=30
Combine -x and -45x to get -46x.
3-46x-15x^{2}-30=0
Subtract 30 from both sides.
-27-46x-15x^{2}=0
Subtract 30 from 3 to get -27.
-15x^{2}-46x-27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-46\right)±\sqrt{\left(-46\right)^{2}-4\left(-15\right)\left(-27\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, -46 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-46\right)±\sqrt{2116-4\left(-15\right)\left(-27\right)}}{2\left(-15\right)}
Square -46.
x=\frac{-\left(-46\right)±\sqrt{2116+60\left(-27\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-\left(-46\right)±\sqrt{2116-1620}}{2\left(-15\right)}
Multiply 60 times -27.
x=\frac{-\left(-46\right)±\sqrt{496}}{2\left(-15\right)}
Add 2116 to -1620.
x=\frac{-\left(-46\right)±4\sqrt{31}}{2\left(-15\right)}
Take the square root of 496.
x=\frac{46±4\sqrt{31}}{2\left(-15\right)}
The opposite of -46 is 46.
x=\frac{46±4\sqrt{31}}{-30}
Multiply 2 times -15.
x=\frac{4\sqrt{31}+46}{-30}
Now solve the equation x=\frac{46±4\sqrt{31}}{-30} when ± is plus. Add 46 to 4\sqrt{31}.
x=\frac{-2\sqrt{31}-23}{15}
Divide 46+4\sqrt{31} by -30.
x=\frac{46-4\sqrt{31}}{-30}
Now solve the equation x=\frac{46±4\sqrt{31}}{-30} when ± is minus. Subtract 4\sqrt{31} from 46.
x=\frac{2\sqrt{31}-23}{15}
Divide 46-4\sqrt{31} by -30.
x=\frac{-2\sqrt{31}-23}{15} x=\frac{2\sqrt{31}-23}{15}
The equation is now solved.
3-x=\left(x+1\right)\left(x+2\right)\times 15
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+2\right).
3-x=\left(x^{2}+3x+2\right)\times 15
Use the distributive property to multiply x+1 by x+2 and combine like terms.
3-x=15x^{2}+45x+30
Use the distributive property to multiply x^{2}+3x+2 by 15.
3-x-15x^{2}=45x+30
Subtract 15x^{2} from both sides.
3-x-15x^{2}-45x=30
Subtract 45x from both sides.
3-46x-15x^{2}=30
Combine -x and -45x to get -46x.
-46x-15x^{2}=30-3
Subtract 3 from both sides.
-46x-15x^{2}=27
Subtract 3 from 30 to get 27.
-15x^{2}-46x=27
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}-46x}{-15}=\frac{27}{-15}
Divide both sides by -15.
x^{2}+\left(-\frac{46}{-15}\right)x=\frac{27}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}+\frac{46}{15}x=\frac{27}{-15}
Divide -46 by -15.
x^{2}+\frac{46}{15}x=-\frac{9}{5}
Reduce the fraction \frac{27}{-15} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{46}{15}x+\left(\frac{23}{15}\right)^{2}=-\frac{9}{5}+\left(\frac{23}{15}\right)^{2}
Divide \frac{46}{15}, the coefficient of the x term, by 2 to get \frac{23}{15}. Then add the square of \frac{23}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{46}{15}x+\frac{529}{225}=-\frac{9}{5}+\frac{529}{225}
Square \frac{23}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{46}{15}x+\frac{529}{225}=\frac{124}{225}
Add -\frac{9}{5} to \frac{529}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23}{15}\right)^{2}=\frac{124}{225}
Factor x^{2}+\frac{46}{15}x+\frac{529}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{15}\right)^{2}}=\sqrt{\frac{124}{225}}
Take the square root of both sides of the equation.
x+\frac{23}{15}=\frac{2\sqrt{31}}{15} x+\frac{23}{15}=-\frac{2\sqrt{31}}{15}
Simplify.
x=\frac{2\sqrt{31}-23}{15} x=\frac{-2\sqrt{31}-23}{15}
Subtract \frac{23}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}