Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{\left(4+3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}
Rationalize the denominator of \frac{3-3\sqrt{3}}{4+3\sqrt{3}} by multiplying numerator and denominator by 4-3\sqrt{3}.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{4^{2}-\left(3\sqrt{3}\right)^{2}}
Consider \left(4+3\sqrt{3}\right)\left(4-3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{16-\left(3\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{16-3^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{16-9\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{16-9\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{16-27}
Multiply 9 and 3 to get 27.
\frac{\left(3-3\sqrt{3}\right)\left(4-3\sqrt{3}\right)}{-11}
Subtract 27 from 16 to get -11.
\frac{12-9\sqrt{3}-12\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{-11}
Apply the distributive property by multiplying each term of 3-3\sqrt{3} by each term of 4-3\sqrt{3}.
\frac{12-21\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{-11}
Combine -9\sqrt{3} and -12\sqrt{3} to get -21\sqrt{3}.
\frac{12-21\sqrt{3}+9\times 3}{-11}
The square of \sqrt{3} is 3.
\frac{12-21\sqrt{3}+27}{-11}
Multiply 9 and 3 to get 27.
\frac{39-21\sqrt{3}}{-11}
Add 12 and 27 to get 39.