Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Rationalize the denominator of \frac{3-\sqrt{2}}{1-\sqrt{5}} by multiplying numerator and denominator by 1+\sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{2}\sqrt{5}}{-4}
Apply the distributive property by multiplying each term of 3-\sqrt{2} by each term of 1+\sqrt{5}.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{10}}{-4}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{-3-3\sqrt{5}+\sqrt{2}+\sqrt{10}}{4}
Multiply both numerator and denominator by -1.