Solve for x
x=-3
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\left(x-1\right)\times 3\left(x-1\right)-\left(x+1\right)\times 2\left(x+1\right)=5\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1.
\left(x-1\right)^{2}\times 3-\left(x+1\right)\times 2\left(x+1\right)=5\left(x-1\right)\left(x+1\right)
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
\left(x-1\right)^{2}\times 3-\left(x+1\right)^{2}\times 2=5\left(x-1\right)\left(x+1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\left(x-1\right)^{2}\times 3-\left(x^{2}+2x+1\right)\times 2=5\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x-1\right)^{2}\times 3-\left(2x^{2}+4x+2\right)=5\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x^{2}+2x+1 by 2.
\left(x-1\right)^{2}\times 3-2x^{2}-4x-2=5\left(x-1\right)\left(x+1\right)
To find the opposite of 2x^{2}+4x+2, find the opposite of each term.
\left(x-1\right)^{2}\times 3-2x^{2}-4x-2=\left(5x-5\right)\left(x+1\right)
Use the distributive property to multiply 5 by x-1.
\left(x-1\right)^{2}\times 3-2x^{2}-4x-2=5x^{2}-5
Use the distributive property to multiply 5x-5 by x+1 and combine like terms.
\left(x^{2}-2x+1\right)\times 3-2x^{2}-4x-2=5x^{2}-5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
3x^{2}-6x+3-2x^{2}-4x-2=5x^{2}-5
Use the distributive property to multiply x^{2}-2x+1 by 3.
x^{2}-6x+3-4x-2=5x^{2}-5
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-10x+3-2=5x^{2}-5
Combine -6x and -4x to get -10x.
x^{2}-10x+1=5x^{2}-5
Subtract 2 from 3 to get 1.
x^{2}-10x+1-5x^{2}=-5
Subtract 5x^{2} from both sides.
-4x^{2}-10x+1=-5
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}-10x+1+5=0
Add 5 to both sides.
-4x^{2}-10x+6=0
Add 1 and 5 to get 6.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-4\right)\times 6}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -10 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-4\right)\times 6}}{2\left(-4\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+16\times 6}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\left(-4\right)}
Multiply 16 times 6.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\left(-4\right)}
Add 100 to 96.
x=\frac{-\left(-10\right)±14}{2\left(-4\right)}
Take the square root of 196.
x=\frac{10±14}{2\left(-4\right)}
The opposite of -10 is 10.
x=\frac{10±14}{-8}
Multiply 2 times -4.
x=\frac{24}{-8}
Now solve the equation x=\frac{10±14}{-8} when ± is plus. Add 10 to 14.
x=-3
Divide 24 by -8.
x=-\frac{4}{-8}
Now solve the equation x=\frac{10±14}{-8} when ± is minus. Subtract 14 from 10.
x=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out 4.
x=-3 x=\frac{1}{2}
The equation is now solved.
\left(x-1\right)\times 3\left(x-1\right)-\left(x+1\right)\times 2\left(x+1\right)=5\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1.
\left(x-1\right)^{2}\times 3-\left(x+1\right)\times 2\left(x+1\right)=5\left(x-1\right)\left(x+1\right)
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
\left(x-1\right)^{2}\times 3-\left(x+1\right)^{2}\times 2=5\left(x-1\right)\left(x+1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\left(x-1\right)^{2}\times 3-\left(x^{2}+2x+1\right)\times 2=5\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x-1\right)^{2}\times 3-\left(2x^{2}+4x+2\right)=5\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x^{2}+2x+1 by 2.
\left(x-1\right)^{2}\times 3-2x^{2}-4x-2=5\left(x-1\right)\left(x+1\right)
To find the opposite of 2x^{2}+4x+2, find the opposite of each term.
\left(x-1\right)^{2}\times 3-2x^{2}-4x-2=\left(5x-5\right)\left(x+1\right)
Use the distributive property to multiply 5 by x-1.
\left(x-1\right)^{2}\times 3-2x^{2}-4x-2=5x^{2}-5
Use the distributive property to multiply 5x-5 by x+1 and combine like terms.
\left(x^{2}-2x+1\right)\times 3-2x^{2}-4x-2=5x^{2}-5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
3x^{2}-6x+3-2x^{2}-4x-2=5x^{2}-5
Use the distributive property to multiply x^{2}-2x+1 by 3.
x^{2}-6x+3-4x-2=5x^{2}-5
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-10x+3-2=5x^{2}-5
Combine -6x and -4x to get -10x.
x^{2}-10x+1=5x^{2}-5
Subtract 2 from 3 to get 1.
x^{2}-10x+1-5x^{2}=-5
Subtract 5x^{2} from both sides.
-4x^{2}-10x+1=-5
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}-10x=-5-1
Subtract 1 from both sides.
-4x^{2}-10x=-6
Subtract 1 from -5 to get -6.
\frac{-4x^{2}-10x}{-4}=-\frac{6}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{10}{-4}\right)x=-\frac{6}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{5}{2}x=-\frac{6}{-4}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{2}x=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Add \frac{3}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{7}{4} x+\frac{5}{4}=-\frac{7}{4}
Simplify.
x=\frac{1}{2} x=-3
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}