Solve for x
x=-\frac{4}{45}\approx -0.088888889
Graph
Share
Copied to clipboard
8\left(3+5x\right)=5\left(4-x\right)
Multiply both sides of the equation by 40, the least common multiple of 5,8.
24+40x=5\left(4-x\right)
Use the distributive property to multiply 8 by 3+5x.
24+40x=20-5x
Use the distributive property to multiply 5 by 4-x.
24+40x+5x=20
Add 5x to both sides.
24+45x=20
Combine 40x and 5x to get 45x.
45x=20-24
Subtract 24 from both sides.
45x=-4
Subtract 24 from 20 to get -4.
x=\frac{-4}{45}
Divide both sides by 45.
x=-\frac{4}{45}
Fraction \frac{-4}{45} can be rewritten as -\frac{4}{45} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}