Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+i\sqrt{2}\right)\left(5i+\sqrt{2}\right)}{\left(5i-\sqrt{2}\right)\left(5i+\sqrt{2}\right)}
Rationalize the denominator of \frac{3+i\sqrt{2}}{5i-\sqrt{2}} by multiplying numerator and denominator by 5i+\sqrt{2}.
\frac{\left(3+i\sqrt{2}\right)\left(5i+\sqrt{2}\right)}{\left(5i\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(5i-\sqrt{2}\right)\left(5i+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+i\sqrt{2}\right)\left(5i+\sqrt{2}\right)}{-25-2}
Square 5i. Square \sqrt{2}.
\frac{\left(3+i\sqrt{2}\right)\left(5i+\sqrt{2}\right)}{-27}
Subtract 2 from -25 to get -27.
\frac{15i+3\sqrt{2}-5\sqrt{2}+i\left(\sqrt{2}\right)^{2}}{-27}
Apply the distributive property by multiplying each term of 3+i\sqrt{2} by each term of 5i+\sqrt{2}.
\frac{15i-2\sqrt{2}+i\left(\sqrt{2}\right)^{2}}{-27}
Combine 3\sqrt{2} and -5\sqrt{2} to get -2\sqrt{2}.
\frac{15i-2\sqrt{2}+2i}{-27}
The square of \sqrt{2} is 2.
\frac{17i-2\sqrt{2}}{-27}
Add 15i and 2i to get 17i.
\frac{-17i+2\sqrt{2}}{27}
Multiply both numerator and denominator by -1.