Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-8x+4x=5x\left(x-2\right)+\left(x-2\right)\times 8
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
3x^{2}-4x=5x\left(x-2\right)+\left(x-2\right)\times 8
Combine -8x and 4x to get -4x.
3x^{2}-4x=5x^{2}-10x+\left(x-2\right)\times 8
Use the distributive property to multiply 5x by x-2.
3x^{2}-4x=5x^{2}-10x+8x-16
Use the distributive property to multiply x-2 by 8.
3x^{2}-4x=5x^{2}-2x-16
Combine -10x and 8x to get -2x.
3x^{2}-4x-5x^{2}=-2x-16
Subtract 5x^{2} from both sides.
-2x^{2}-4x=-2x-16
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}-4x+2x=-16
Add 2x to both sides.
-2x^{2}-2x=-16
Combine -4x and 2x to get -2x.
-2x^{2}-2x+16=0
Add 16 to both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 16}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -2 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 16}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\times 16}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4+128}}{2\left(-2\right)}
Multiply 8 times 16.
x=\frac{-\left(-2\right)±\sqrt{132}}{2\left(-2\right)}
Add 4 to 128.
x=\frac{-\left(-2\right)±2\sqrt{33}}{2\left(-2\right)}
Take the square root of 132.
x=\frac{2±2\sqrt{33}}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{33}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{33}+2}{-4}
Now solve the equation x=\frac{2±2\sqrt{33}}{-4} when ± is plus. Add 2 to 2\sqrt{33}.
x=\frac{-\sqrt{33}-1}{2}
Divide 2+2\sqrt{33} by -4.
x=\frac{2-2\sqrt{33}}{-4}
Now solve the equation x=\frac{2±2\sqrt{33}}{-4} when ± is minus. Subtract 2\sqrt{33} from 2.
x=\frac{\sqrt{33}-1}{2}
Divide 2-2\sqrt{33} by -4.
x=\frac{-\sqrt{33}-1}{2} x=\frac{\sqrt{33}-1}{2}
The equation is now solved.
3x^{2}-8x+4x=5x\left(x-2\right)+\left(x-2\right)\times 8
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
3x^{2}-4x=5x\left(x-2\right)+\left(x-2\right)\times 8
Combine -8x and 4x to get -4x.
3x^{2}-4x=5x^{2}-10x+\left(x-2\right)\times 8
Use the distributive property to multiply 5x by x-2.
3x^{2}-4x=5x^{2}-10x+8x-16
Use the distributive property to multiply x-2 by 8.
3x^{2}-4x=5x^{2}-2x-16
Combine -10x and 8x to get -2x.
3x^{2}-4x-5x^{2}=-2x-16
Subtract 5x^{2} from both sides.
-2x^{2}-4x=-2x-16
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}-4x+2x=-16
Add 2x to both sides.
-2x^{2}-2x=-16
Combine -4x and 2x to get -2x.
\frac{-2x^{2}-2x}{-2}=-\frac{16}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{2}{-2}\right)x=-\frac{16}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+x=-\frac{16}{-2}
Divide -2 by -2.
x^{2}+x=8
Divide -16 by -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=8+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=8+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{33}{4}
Add 8 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{33}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{33}}{2} x+\frac{1}{2}=-\frac{\sqrt{33}}{2}
Simplify.
x=\frac{\sqrt{33}-1}{2} x=\frac{-\sqrt{33}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.