Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x-4\right)\left(x+4\right)}{6x^{2}}\times \frac{\left(2x\right)^{3}}{x^{3}+10x^{2}+24x}
Factor the expressions that are not already factored in \frac{3x^{2}-48}{6x^{2}}.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{\left(2x\right)^{3}}{x^{3}+10x^{2}+24x}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{2^{3}x^{3}}{x^{3}+10x^{2}+24x}
Expand \left(2x\right)^{3}.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{8x^{3}}{x^{3}+10x^{2}+24x}
Calculate 2 to the power of 3 and get 8.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{8x^{3}}{x\left(x+4\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{8x^{3}}{x^{3}+10x^{2}+24x}.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{8x^{2}}{\left(x+4\right)\left(x+6\right)}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)\times 8x^{2}}{2x^{2}\left(x+4\right)\left(x+6\right)}
Multiply \frac{\left(x-4\right)\left(x+4\right)}{2x^{2}} times \frac{8x^{2}}{\left(x+4\right)\left(x+6\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x-4\right)}{x+6}
Cancel out 2\left(x+4\right)x^{2} in both numerator and denominator.
\frac{4x-16}{x+6}
Use the distributive property to multiply 4 by x-4.
\frac{3\left(x-4\right)\left(x+4\right)}{6x^{2}}\times \frac{\left(2x\right)^{3}}{x^{3}+10x^{2}+24x}
Factor the expressions that are not already factored in \frac{3x^{2}-48}{6x^{2}}.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{\left(2x\right)^{3}}{x^{3}+10x^{2}+24x}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{2^{3}x^{3}}{x^{3}+10x^{2}+24x}
Expand \left(2x\right)^{3}.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{8x^{3}}{x^{3}+10x^{2}+24x}
Calculate 2 to the power of 3 and get 8.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{8x^{3}}{x\left(x+4\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{8x^{3}}{x^{3}+10x^{2}+24x}.
\frac{\left(x-4\right)\left(x+4\right)}{2x^{2}}\times \frac{8x^{2}}{\left(x+4\right)\left(x+6\right)}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)\times 8x^{2}}{2x^{2}\left(x+4\right)\left(x+6\right)}
Multiply \frac{\left(x-4\right)\left(x+4\right)}{2x^{2}} times \frac{8x^{2}}{\left(x+4\right)\left(x+6\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x-4\right)}{x+6}
Cancel out 2\left(x+4\right)x^{2} in both numerator and denominator.
\frac{4x-16}{x+6}
Use the distributive property to multiply 4 by x-4.