Evaluate
\frac{92}{35}\approx 2.628571429
Factor
\frac{2 ^ {2} \cdot 23}{5 \cdot 7} = 2\frac{22}{35} = 2.6285714285714286
Share
Copied to clipboard
\frac{9-80-\left(-48\right)}{-\frac{3}{4}-\frac{16}{2}}
Multiply 3 and 3 to get 9.
\frac{-71-\left(-48\right)}{-\frac{3}{4}-\frac{16}{2}}
Subtract 80 from 9 to get -71.
\frac{-71+48}{-\frac{3}{4}-\frac{16}{2}}
The opposite of -48 is 48.
\frac{-23}{-\frac{3}{4}-\frac{16}{2}}
Add -71 and 48 to get -23.
\frac{-23}{-\frac{3}{4}-8}
Divide 16 by 2 to get 8.
\frac{-23}{-\frac{3}{4}-\frac{32}{4}}
Convert 8 to fraction \frac{32}{4}.
\frac{-23}{\frac{-3-32}{4}}
Since -\frac{3}{4} and \frac{32}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-23}{-\frac{35}{4}}
Subtract 32 from -3 to get -35.
-23\left(-\frac{4}{35}\right)
Divide -23 by -\frac{35}{4} by multiplying -23 by the reciprocal of -\frac{35}{4}.
\frac{-23\left(-4\right)}{35}
Express -23\left(-\frac{4}{35}\right) as a single fraction.
\frac{92}{35}
Multiply -23 and -4 to get 92.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}