Evaluate
\frac{6\sqrt{77}}{2}-\frac{11\sqrt{14}}{56}\approx 25.589924747
Factor
\frac{\frac{1}{7} \sqrt{22} {(84 \sqrt{14} - \sqrt{77})}}{8} = 25.589924746917198
Share
Copied to clipboard
\frac{3\sqrt{\frac{6+1}{2}}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Multiply 3 and 2 to get 6.
\frac{3\sqrt{\frac{7}{2}}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Add 6 and 1 to get 7.
\frac{3\times \frac{\sqrt{7}}{\sqrt{2}}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{7}{2}} as the division of square roots \frac{\sqrt{7}}{\sqrt{2}}.
\frac{3\times \frac{\sqrt{7}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\times \frac{\sqrt{7}\sqrt{2}}{2}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
The square of \sqrt{2} is 2.
\frac{3\times \frac{\sqrt{14}}{2}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Express 3\times \frac{\sqrt{14}}{2} as a single fraction.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\sqrt{\frac{7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Multiply 1 and 7 to get 7.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\sqrt{\frac{11}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Add 7 and 4 to get 11.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\times \frac{\sqrt{11}}{\sqrt{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{11}{7}} as the division of square roots \frac{\sqrt{11}}{\sqrt{7}}.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\times \frac{\sqrt{11}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\times \frac{\sqrt{11}\sqrt{7}}{7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
The square of \sqrt{7} is 7.
\frac{\frac{3\sqrt{14}}{2}-\frac{1}{8}\times \frac{\sqrt{77}}{7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
To multiply \sqrt{11} and \sqrt{7}, multiply the numbers under the square root.
\frac{\frac{3\sqrt{14}}{2}-\frac{\sqrt{77}}{8\times 7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Multiply \frac{1}{8} times \frac{\sqrt{77}}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3\sqrt{14}}{2}-\frac{\sqrt{77}}{56}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Multiply 8 and 7 to get 56.
\frac{\frac{28\times 3\sqrt{14}}{56}-\frac{\sqrt{77}}{56}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 56 is 56. Multiply \frac{3\sqrt{14}}{2} times \frac{28}{28}.
\frac{\frac{28\times 3\sqrt{14}-\sqrt{77}}{56}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Since \frac{28\times 3\sqrt{14}}{56} and \frac{\sqrt{77}}{56} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{84\sqrt{14}-\sqrt{77}}{56}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Do the multiplications in 28\times 3\sqrt{14}-\sqrt{77}.
\frac{\left(84\sqrt{14}-\sqrt{77}\right)\times 2}{56}\sqrt{\frac{5\times 2+1}{2}}
Divide \frac{84\sqrt{14}-\sqrt{77}}{56} by \frac{1}{2} by multiplying \frac{84\sqrt{14}-\sqrt{77}}{56} by the reciprocal of \frac{1}{2}.
\left(84\sqrt{14}-\sqrt{77}\right)\times \frac{1}{28}\sqrt{\frac{5\times 2+1}{2}}
Divide \left(84\sqrt{14}-\sqrt{77}\right)\times 2 by 56 to get \left(84\sqrt{14}-\sqrt{77}\right)\times \frac{1}{28}.
\left(84\sqrt{14}\times \frac{1}{28}-\sqrt{77}\times \frac{1}{28}\right)\sqrt{\frac{5\times 2+1}{2}}
Use the distributive property to multiply 84\sqrt{14}-\sqrt{77} by \frac{1}{28}.
\left(\frac{84}{28}\sqrt{14}-\sqrt{77}\times \frac{1}{28}\right)\sqrt{\frac{5\times 2+1}{2}}
Multiply 84 and \frac{1}{28} to get \frac{84}{28}.
\left(3\sqrt{14}-\sqrt{77}\times \frac{1}{28}\right)\sqrt{\frac{5\times 2+1}{2}}
Divide 84 by 28 to get 3.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\sqrt{\frac{5\times 2+1}{2}}
Multiply -1 and \frac{1}{28} to get -\frac{1}{28}.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\sqrt{\frac{10+1}{2}}
Multiply 5 and 2 to get 10.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\sqrt{\frac{11}{2}}
Add 10 and 1 to get 11.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\times \frac{\sqrt{11}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{11}{2}} as the division of square roots \frac{\sqrt{11}}{\sqrt{2}}.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\times \frac{\sqrt{11}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\times \frac{\sqrt{11}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\left(3\sqrt{14}-\frac{1}{28}\sqrt{77}\right)\times \frac{\sqrt{22}}{2}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
3\sqrt{14}\times \frac{\sqrt{22}}{2}-\frac{1}{28}\sqrt{77}\times \frac{\sqrt{22}}{2}
Use the distributive property to multiply 3\sqrt{14}-\frac{1}{28}\sqrt{77} by \frac{\sqrt{22}}{2}.
\frac{3\sqrt{22}}{2}\sqrt{14}-\frac{1}{28}\sqrt{77}\times \frac{\sqrt{22}}{2}
Express 3\times \frac{\sqrt{22}}{2} as a single fraction.
\frac{3\sqrt{22}}{2}\sqrt{14}+\frac{-\sqrt{22}}{28\times 2}\sqrt{77}
Multiply -\frac{1}{28} times \frac{\sqrt{22}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{22}\sqrt{14}}{2}+\frac{-\sqrt{22}}{28\times 2}\sqrt{77}
Express \frac{3\sqrt{22}}{2}\sqrt{14} as a single fraction.
\frac{3\sqrt{22}\sqrt{14}}{2}+\frac{-\sqrt{22}}{56}\sqrt{77}
Multiply 28 and 2 to get 56.
\frac{3\sqrt{22}\sqrt{14}}{2}+\frac{-\sqrt{22}\sqrt{77}}{56}
Express \frac{-\sqrt{22}}{56}\sqrt{77} as a single fraction.
\frac{28\times 3\sqrt{22}\sqrt{14}}{56}+\frac{-\sqrt{22}\sqrt{77}}{56}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 56 is 56. Multiply \frac{3\sqrt{22}\sqrt{14}}{2} times \frac{28}{28}.
\frac{28\times 3\sqrt{22}\sqrt{14}-\sqrt{22}\sqrt{77}}{56}
Since \frac{28\times 3\sqrt{22}\sqrt{14}}{56} and \frac{-\sqrt{22}\sqrt{77}}{56} have the same denominator, add them by adding their numerators.
\frac{168\sqrt{77}-11\sqrt{14}}{56}
Do the multiplications in 28\times 3\sqrt{22}\sqrt{14}-\sqrt{22}\sqrt{77}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}