Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{\left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)}
Rationalize the denominator of \frac{3\sqrt{3}-1}{3\sqrt{2}-1} by multiplying numerator and denominator by 3\sqrt{2}+1.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{\left(3\sqrt{2}\right)^{2}-1^{2}}
Consider \left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{3^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{9\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{9\times 2-1^{2}}
The square of \sqrt{2} is 2.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{18-1^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{18-1}
Calculate 1 to the power of 2 and get 1.
\frac{\left(3\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)}{17}
Subtract 1 from 18 to get 17.
\frac{9\sqrt{3}\sqrt{2}+3\sqrt{3}-3\sqrt{2}-1}{17}
Apply the distributive property by multiplying each term of 3\sqrt{3}-1 by each term of 3\sqrt{2}+1.
\frac{9\sqrt{6}+3\sqrt{3}-3\sqrt{2}-1}{17}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.