Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{\frac{6+2}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Multiply 2 and 3 to get 6.
\frac{3\sqrt{\frac{8}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Add 6 and 2 to get 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
The square of \sqrt{3} is 3.
\frac{3\times \frac{2\sqrt{6}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{6}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Cancel out 3 and 3.
2\sqrt{6}\times 2\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Divide 2\sqrt{6} by \frac{1}{2} by multiplying 2\sqrt{6} by the reciprocal of \frac{1}{2}.
4\sqrt{6}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Multiply 2 and 2 to get 4.
4\sqrt{6}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
The square of \sqrt{5} is 5.
4\sqrt{6}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{4\left(-1\right)}{8}\sqrt{6}\times \frac{\sqrt{10}}{5}\sqrt{15}
Express 4\left(-\frac{1}{8}\right) as a single fraction.
\frac{-4}{8}\sqrt{6}\times \frac{\sqrt{10}}{5}\sqrt{15}
Multiply 4 and -1 to get -4.
-\frac{1}{2}\sqrt{6}\times \frac{\sqrt{10}}{5}\sqrt{15}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
\frac{-\sqrt{10}}{2\times 5}\sqrt{6}\sqrt{15}
Multiply -\frac{1}{2} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{10}\sqrt{15}}{2\times 5}\sqrt{6}
Express \frac{-\sqrt{10}}{2\times 5}\sqrt{15} as a single fraction.
\frac{-\sqrt{150}}{2\times 5}\sqrt{6}
To multiply \sqrt{10} and \sqrt{15}, multiply the numbers under the square root.
\frac{-\sqrt{150}}{10}\sqrt{6}
Multiply 2 and 5 to get 10.
\frac{-5\sqrt{6}}{10}\sqrt{6}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
-\frac{1}{2}\sqrt{6}\sqrt{6}
Divide -5\sqrt{6} by 10 to get -\frac{1}{2}\sqrt{6}.
-\frac{1}{2}\times 6
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{-6}{2}
Express -\frac{1}{2}\times 6 as a single fraction.
-3
Divide -6 by 2 to get -3.