Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)}
Rationalize the denominator of \frac{3\sqrt{2}+4}{5\sqrt{2}+7} by multiplying numerator and denominator by 5\sqrt{2}-7.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{\left(5\sqrt{2}\right)^{2}-7^{2}}
Consider \left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{5^{2}\left(\sqrt{2}\right)^{2}-7^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{25\left(\sqrt{2}\right)^{2}-7^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{25\times 2-7^{2}}
The square of \sqrt{2} is 2.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{50-7^{2}}
Multiply 25 and 2 to get 50.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{50-49}
Calculate 7 to the power of 2 and get 49.
\frac{\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)}{1}
Subtract 49 from 50 to get 1.
\left(3\sqrt{2}+4\right)\left(5\sqrt{2}-7\right)
Anything divided by one gives itself.
15\left(\sqrt{2}\right)^{2}-21\sqrt{2}+20\sqrt{2}-28
Apply the distributive property by multiplying each term of 3\sqrt{2}+4 by each term of 5\sqrt{2}-7.
15\times 2-21\sqrt{2}+20\sqrt{2}-28
The square of \sqrt{2} is 2.
30-21\sqrt{2}+20\sqrt{2}-28
Multiply 15 and 2 to get 30.
30-\sqrt{2}-28
Combine -21\sqrt{2} and 20\sqrt{2} to get -\sqrt{2}.
2-\sqrt{2}
Subtract 28 from 30 to get 2.