Evaluate
\frac{3\sqrt{129}}{2}\approx 17.036725037
Quiz
Arithmetic
5 problems similar to:
\frac{ 3 \sqrt{ 18 } \frac{ \sqrt{ 3 } }{ 6 } }{ 2 } \sqrt{ 86 }
Share
Copied to clipboard
\frac{3\times 3\sqrt{2}\times \frac{\sqrt{3}}{6}}{2}\sqrt{86}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{9\sqrt{2}\times \frac{\sqrt{3}}{6}}{2}\sqrt{86}
Multiply 3 and 3 to get 9.
\frac{\frac{9\sqrt{3}}{6}\sqrt{2}}{2}\sqrt{86}
Express 9\times \frac{\sqrt{3}}{6} as a single fraction.
\frac{\frac{3}{2}\sqrt{3}\sqrt{2}}{2}\sqrt{86}
Divide 9\sqrt{3} by 6 to get \frac{3}{2}\sqrt{3}.
\frac{\frac{3}{2}\sqrt{6}}{2}\sqrt{86}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3}{4}\sqrt{6}\sqrt{86}
Divide \frac{3}{2}\sqrt{6} by 2 to get \frac{3}{4}\sqrt{6}.
\frac{3}{4}\sqrt{516}
To multiply \sqrt{6} and \sqrt{86}, multiply the numbers under the square root.
\frac{3}{4}\times 2\sqrt{129}
Factor 516=2^{2}\times 129. Rewrite the square root of the product \sqrt{2^{2}\times 129} as the product of square roots \sqrt{2^{2}}\sqrt{129}. Take the square root of 2^{2}.
\frac{3\times 2}{4}\sqrt{129}
Express \frac{3}{4}\times 2 as a single fraction.
\frac{6}{4}\sqrt{129}
Multiply 3 and 2 to get 6.
\frac{3}{2}\sqrt{129}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}