Evaluate
5-\sqrt{10}\approx 1.83772234
Share
Copied to clipboard
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{\left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right)}
Rationalize the denominator of \frac{3\sqrt{10}}{2+\sqrt{10}} by multiplying numerator and denominator by 2-\sqrt{10}.
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{2^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{4-10}
Square 2. Square \sqrt{10}.
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{-6}
Subtract 10 from 4 to get -6.
\frac{6\sqrt{10}-3\left(\sqrt{10}\right)^{2}}{-6}
Use the distributive property to multiply 3\sqrt{10} by 2-\sqrt{10}.
\frac{6\sqrt{10}-3\times 10}{-6}
The square of \sqrt{10} is 10.
\frac{6\sqrt{10}-30}{-6}
Multiply -3 and 10 to get -30.
-\sqrt{10}+5
Divide each term of 6\sqrt{10}-30 by -6 to get -\sqrt{10}+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}