Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{\left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right)}
Rationalize the denominator of \frac{3\sqrt{10}}{2+\sqrt{10}} by multiplying numerator and denominator by 2-\sqrt{10}.
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{2^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{4-10}
Square 2. Square \sqrt{10}.
\frac{3\sqrt{10}\left(2-\sqrt{10}\right)}{-6}
Subtract 10 from 4 to get -6.
\frac{6\sqrt{10}-3\left(\sqrt{10}\right)^{2}}{-6}
Use the distributive property to multiply 3\sqrt{10} by 2-\sqrt{10}.
\frac{6\sqrt{10}-3\times 10}{-6}
The square of \sqrt{10} is 10.
\frac{6\sqrt{10}-30}{-6}
Multiply -3 and 10 to get -30.
-\sqrt{10}+5
Divide each term of 6\sqrt{10}-30 by -6 to get -\sqrt{10}+5.