Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{x-4}-\frac{24}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{24}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}.
\frac{3\left(x+4\right)-24}{\left(x-4\right)\left(x+4\right)}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{24}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+12-24}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in 3\left(x+4\right)-24.
\frac{3x-12}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 3x+12-24.
\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{3x-12}{\left(x-4\right)\left(x+4\right)}.
\frac{3}{x+4}
Cancel out x-4 in both numerator and denominator.