Solve for x
x = \frac{5 \sqrt{41} + 957}{346} \approx 2.858426651
Graph
Share
Copied to clipboard
5\times 3-\frac{1}{16}\left(x-2\right)\left(-3\times 41^{\frac{1}{2}}+23\right)\times 2=17\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-2\right), the least common multiple of x-2,5.
15-\frac{1}{16}\left(x-2\right)\left(-3\times 41^{\frac{1}{2}}+23\right)\times 2=17\left(x-2\right)
Multiply 5 and 3 to get 15.
15-\frac{1}{8}\left(x-2\right)\left(-3\times 41^{\frac{1}{2}}+23\right)=17\left(x-2\right)
Multiply -\frac{1}{16} and 2 to get -\frac{1}{8}.
15+\left(-\frac{1}{8}x+\frac{1}{4}\right)\left(-3\times 41^{\frac{1}{2}}+23\right)=17\left(x-2\right)
Use the distributive property to multiply -\frac{1}{8} by x-2.
15+\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{23}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}+\frac{23}{4}=17\left(x-2\right)
Use the distributive property to multiply -\frac{1}{8}x+\frac{1}{4} by -3\times 41^{\frac{1}{2}}+23.
\frac{83}{4}+\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{23}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}=17\left(x-2\right)
Add 15 and \frac{23}{4} to get \frac{83}{4}.
\frac{83}{4}+\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{23}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}=17x-34
Use the distributive property to multiply 17 by x-2.
\frac{83}{4}+\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{23}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}-17x=-34
Subtract 17x from both sides.
\frac{83}{4}+\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{159}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}=-34
Combine -\frac{23}{8}x and -17x to get -\frac{159}{8}x.
\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{159}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}=-34-\frac{83}{4}
Subtract \frac{83}{4} from both sides.
\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{159}{8}x-\frac{3}{4}\times 41^{\frac{1}{2}}=-\frac{219}{4}
Subtract \frac{83}{4} from -34 to get -\frac{219}{4}.
\frac{3}{8}x\times 41^{\frac{1}{2}}-\frac{159}{8}x=-\frac{219}{4}+\frac{3}{4}\times 41^{\frac{1}{2}}
Add \frac{3}{4}\times 41^{\frac{1}{2}} to both sides.
\frac{3}{8}\sqrt{41}x-\frac{159}{8}x=\frac{3}{4}\sqrt{41}-\frac{219}{4}
Reorder the terms.
\left(\frac{3}{8}\sqrt{41}-\frac{159}{8}\right)x=\frac{3}{4}\sqrt{41}-\frac{219}{4}
Combine all terms containing x.
\frac{3\sqrt{41}-159}{8}x=\frac{3\sqrt{41}-219}{4}
The equation is in standard form.
\frac{8\times \frac{3\sqrt{41}-159}{8}x}{3\sqrt{41}-159}=\frac{3\sqrt{41}-219}{4\times \frac{3\sqrt{41}-159}{8}}
Divide both sides by \frac{3}{8}\sqrt{41}-\frac{159}{8}.
x=\frac{3\sqrt{41}-219}{4\times \frac{3\sqrt{41}-159}{8}}
Dividing by \frac{3}{8}\sqrt{41}-\frac{159}{8} undoes the multiplication by \frac{3}{8}\sqrt{41}-\frac{159}{8}.
x=\frac{5\sqrt{41}+957}{346}
Divide \frac{3\sqrt{41}-219}{4} by \frac{3}{8}\sqrt{41}-\frac{159}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}