Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{x-2}+\frac{\frac{12}{x^{2}-4}}{\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x-2}{x-2}.
\frac{3}{x-2}+\frac{\frac{12}{x^{2}-4}}{\frac{x+2-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}}
Since \frac{x+2}{\left(x-2\right)\left(x+2\right)} and \frac{x-2}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{x-2}+\frac{\frac{12}{x^{2}-4}}{\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}}
Do the multiplications in x+2-\left(x-2\right).
\frac{3}{x-2}+\frac{\frac{12}{x^{2}-4}}{\frac{4}{\left(x-2\right)\left(x+2\right)}}
Combine like terms in x+2-x+2.
\frac{3}{x-2}+\frac{12\left(x-2\right)\left(x+2\right)}{\left(x^{2}-4\right)\times 4}
Divide \frac{12}{x^{2}-4} by \frac{4}{\left(x-2\right)\left(x+2\right)} by multiplying \frac{12}{x^{2}-4} by the reciprocal of \frac{4}{\left(x-2\right)\left(x+2\right)}.
\frac{3}{x-2}+\frac{3\left(x-2\right)\left(x+2\right)}{x^{2}-4}
Cancel out 4 in both numerator and denominator.
\frac{3}{x-2}+\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{3\left(x-2\right)\left(x+2\right)}{x^{2}-4}.
\frac{3}{x-2}+3
Cancel out \left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{3}{x-2}+\frac{3\left(x-2\right)}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
\frac{3+3\left(x-2\right)}{x-2}
Since \frac{3}{x-2} and \frac{3\left(x-2\right)}{x-2} have the same denominator, add them by adding their numerators.
\frac{3+3x-6}{x-2}
Do the multiplications in 3+3\left(x-2\right).
\frac{-3+3x}{x-2}
Combine like terms in 3+3x-6.