Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
\left(x+1\right)\times 3+\left(x-x^{-1}\right)\times 5=8x+5
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x^{2}-1.
3x+3+\left(x-x^{-1}\right)\times 5=8x+5
Use the distributive property to multiply x+1 by 3.
3x+3+5x-5x^{-1}=8x+5
Use the distributive property to multiply x-x^{-1} by 5.
8x+3-5x^{-1}=8x+5
Combine 3x and 5x to get 8x.
8x+3-5x^{-1}-8x=5
Subtract 8x from both sides.
3-5x^{-1}=5
Combine 8x and -8x to get 0.
-5x^{-1}=5-3
Subtract 3 from both sides.
-5x^{-1}=2
Subtract 3 from 5 to get 2.
x^{-1}=-\frac{2}{5}
Divide both sides by -5.
\frac{1}{x}=-\frac{2}{5}
Reorder the terms.
5=-2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
-2x=5
Swap sides so that all variable terms are on the left hand side.
x=\frac{5}{-2}
Divide both sides by -2.
x=-\frac{5}{2}
Fraction \frac{5}{-2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}