Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{x+9}+\frac{x+63}{\left(x-9\right)\left(x+9\right)}
Factor x^{2}-81.
\frac{3\left(x-9\right)}{\left(x-9\right)\left(x+9\right)}+\frac{x+63}{\left(x-9\right)\left(x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and \left(x-9\right)\left(x+9\right) is \left(x-9\right)\left(x+9\right). Multiply \frac{3}{x+9} times \frac{x-9}{x-9}.
\frac{3\left(x-9\right)+x+63}{\left(x-9\right)\left(x+9\right)}
Since \frac{3\left(x-9\right)}{\left(x-9\right)\left(x+9\right)} and \frac{x+63}{\left(x-9\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{3x-27+x+63}{\left(x-9\right)\left(x+9\right)}
Do the multiplications in 3\left(x-9\right)+x+63.
\frac{4x+36}{\left(x-9\right)\left(x+9\right)}
Combine like terms in 3x-27+x+63.
\frac{4\left(x+9\right)}{\left(x-9\right)\left(x+9\right)}
Factor the expressions that are not already factored in \frac{4x+36}{\left(x-9\right)\left(x+9\right)}.
\frac{4}{x-9}
Cancel out x+9 in both numerator and denominator.
\frac{3}{x+9}+\frac{x+63}{\left(x-9\right)\left(x+9\right)}
Factor x^{2}-81.
\frac{3\left(x-9\right)}{\left(x-9\right)\left(x+9\right)}+\frac{x+63}{\left(x-9\right)\left(x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and \left(x-9\right)\left(x+9\right) is \left(x-9\right)\left(x+9\right). Multiply \frac{3}{x+9} times \frac{x-9}{x-9}.
\frac{3\left(x-9\right)+x+63}{\left(x-9\right)\left(x+9\right)}
Since \frac{3\left(x-9\right)}{\left(x-9\right)\left(x+9\right)} and \frac{x+63}{\left(x-9\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{3x-27+x+63}{\left(x-9\right)\left(x+9\right)}
Do the multiplications in 3\left(x-9\right)+x+63.
\frac{4x+36}{\left(x-9\right)\left(x+9\right)}
Combine like terms in 3x-27+x+63.
\frac{4\left(x+9\right)}{\left(x-9\right)\left(x+9\right)}
Factor the expressions that are not already factored in \frac{4x+36}{\left(x-9\right)\left(x+9\right)}.
\frac{4}{x-9}
Cancel out x+9 in both numerator and denominator.