Evaluate
\frac{9}{26}\approx 0.346153846
Factor
\frac{3 ^ {2}}{2 \cdot 13} = 0.34615384615384615
Share
Copied to clipboard
\frac{3}{8+\frac{3}{\frac{8}{2}+\frac{1}{2}}}
Convert 4 to fraction \frac{8}{2}.
\frac{3}{8+\frac{3}{\frac{8+1}{2}}}
Since \frac{8}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{8+\frac{3}{\frac{9}{2}}}
Add 8 and 1 to get 9.
\frac{3}{8+3\times \frac{2}{9}}
Divide 3 by \frac{9}{2} by multiplying 3 by the reciprocal of \frac{9}{2}.
\frac{3}{8+\frac{3\times 2}{9}}
Express 3\times \frac{2}{9} as a single fraction.
\frac{3}{8+\frac{6}{9}}
Multiply 3 and 2 to get 6.
\frac{3}{8+\frac{2}{3}}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\frac{3}{\frac{24}{3}+\frac{2}{3}}
Convert 8 to fraction \frac{24}{3}.
\frac{3}{\frac{24+2}{3}}
Since \frac{24}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{3}{\frac{26}{3}}
Add 24 and 2 to get 26.
3\times \frac{3}{26}
Divide 3 by \frac{26}{3} by multiplying 3 by the reciprocal of \frac{26}{3}.
\frac{3\times 3}{26}
Express 3\times \frac{3}{26} as a single fraction.
\frac{9}{26}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}