Solve for x
x=-\frac{20}{29}\approx -0.689655172
Graph
Share
Copied to clipboard
-\frac{17}{40}x+2=1+\frac{3}{10}x+\frac{3}{2}
Combine \frac{3}{8}x and -\frac{4}{5}x to get -\frac{17}{40}x.
-\frac{17}{40}x+2=\frac{2}{2}+\frac{3}{10}x+\frac{3}{2}
Convert 1 to fraction \frac{2}{2}.
-\frac{17}{40}x+2=\frac{2+3}{2}+\frac{3}{10}x
Since \frac{2}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
-\frac{17}{40}x+2=\frac{5}{2}+\frac{3}{10}x
Add 2 and 3 to get 5.
-\frac{17}{40}x+2-\frac{3}{10}x=\frac{5}{2}
Subtract \frac{3}{10}x from both sides.
-\frac{29}{40}x+2=\frac{5}{2}
Combine -\frac{17}{40}x and -\frac{3}{10}x to get -\frac{29}{40}x.
-\frac{29}{40}x=\frac{5}{2}-2
Subtract 2 from both sides.
-\frac{29}{40}x=\frac{5}{2}-\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
-\frac{29}{40}x=\frac{5-4}{2}
Since \frac{5}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{40}x=\frac{1}{2}
Subtract 4 from 5 to get 1.
x=\frac{1}{2}\left(-\frac{40}{29}\right)
Multiply both sides by -\frac{40}{29}, the reciprocal of -\frac{29}{40}.
x=\frac{1\left(-40\right)}{2\times 29}
Multiply \frac{1}{2} times -\frac{40}{29} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-40}{58}
Do the multiplications in the fraction \frac{1\left(-40\right)}{2\times 29}.
x=-\frac{20}{29}
Reduce the fraction \frac{-40}{58} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}