Solve for x
x = -\frac{51}{7} = -7\frac{2}{7} \approx -7.285714286
Graph
Share
Copied to clipboard
\frac{3}{8}+x-\frac{5}{12}\times 2x-\frac{5}{12}\left(-5\right)=-2-\frac{1}{8}x+\frac{7}{3}
Use the distributive property to multiply -\frac{5}{12} by 2x-5.
\frac{3}{8}+x+\frac{-5\times 2}{12}x-\frac{5}{12}\left(-5\right)=-2-\frac{1}{8}x+\frac{7}{3}
Express -\frac{5}{12}\times 2 as a single fraction.
\frac{3}{8}+x+\frac{-10}{12}x-\frac{5}{12}\left(-5\right)=-2-\frac{1}{8}x+\frac{7}{3}
Multiply -5 and 2 to get -10.
\frac{3}{8}+x-\frac{5}{6}x-\frac{5}{12}\left(-5\right)=-2-\frac{1}{8}x+\frac{7}{3}
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{8}+x-\frac{5}{6}x+\frac{-5\left(-5\right)}{12}=-2-\frac{1}{8}x+\frac{7}{3}
Express -\frac{5}{12}\left(-5\right) as a single fraction.
\frac{3}{8}+x-\frac{5}{6}x+\frac{25}{12}=-2-\frac{1}{8}x+\frac{7}{3}
Multiply -5 and -5 to get 25.
\frac{3}{8}+\frac{1}{6}x+\frac{25}{12}=-2-\frac{1}{8}x+\frac{7}{3}
Combine x and -\frac{5}{6}x to get \frac{1}{6}x.
\frac{9}{24}+\frac{1}{6}x+\frac{50}{24}=-2-\frac{1}{8}x+\frac{7}{3}
Least common multiple of 8 and 12 is 24. Convert \frac{3}{8} and \frac{25}{12} to fractions with denominator 24.
\frac{9+50}{24}+\frac{1}{6}x=-2-\frac{1}{8}x+\frac{7}{3}
Since \frac{9}{24} and \frac{50}{24} have the same denominator, add them by adding their numerators.
\frac{59}{24}+\frac{1}{6}x=-2-\frac{1}{8}x+\frac{7}{3}
Add 9 and 50 to get 59.
\frac{59}{24}+\frac{1}{6}x=-\frac{6}{3}-\frac{1}{8}x+\frac{7}{3}
Convert -2 to fraction -\frac{6}{3}.
\frac{59}{24}+\frac{1}{6}x=\frac{-6+7}{3}-\frac{1}{8}x
Since -\frac{6}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
\frac{59}{24}+\frac{1}{6}x=\frac{1}{3}-\frac{1}{8}x
Add -6 and 7 to get 1.
\frac{59}{24}+\frac{1}{6}x+\frac{1}{8}x=\frac{1}{3}
Add \frac{1}{8}x to both sides.
\frac{59}{24}+\frac{7}{24}x=\frac{1}{3}
Combine \frac{1}{6}x and \frac{1}{8}x to get \frac{7}{24}x.
\frac{7}{24}x=\frac{1}{3}-\frac{59}{24}
Subtract \frac{59}{24} from both sides.
\frac{7}{24}x=\frac{8}{24}-\frac{59}{24}
Least common multiple of 3 and 24 is 24. Convert \frac{1}{3} and \frac{59}{24} to fractions with denominator 24.
\frac{7}{24}x=\frac{8-59}{24}
Since \frac{8}{24} and \frac{59}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{24}x=\frac{-51}{24}
Subtract 59 from 8 to get -51.
\frac{7}{24}x=-\frac{17}{8}
Reduce the fraction \frac{-51}{24} to lowest terms by extracting and canceling out 3.
x=-\frac{17}{8}\times \frac{24}{7}
Multiply both sides by \frac{24}{7}, the reciprocal of \frac{7}{24}.
x=\frac{-17\times 24}{8\times 7}
Multiply -\frac{17}{8} times \frac{24}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-408}{56}
Do the multiplications in the fraction \frac{-17\times 24}{8\times 7}.
x=-\frac{51}{7}
Reduce the fraction \frac{-408}{56} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}