Solve for x
x=\frac{2}{3}\approx 0.666666667
x=\frac{8}{15}\approx 0.533333333
Graph
Share
Copied to clipboard
\frac{3}{8}x^{2}-\frac{9}{20}x=-\frac{2}{15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{3}{8}x^{2}-\frac{9}{20}x-\left(-\frac{2}{15}\right)=-\frac{2}{15}-\left(-\frac{2}{15}\right)
Add \frac{2}{15} to both sides of the equation.
\frac{3}{8}x^{2}-\frac{9}{20}x-\left(-\frac{2}{15}\right)=0
Subtracting -\frac{2}{15} from itself leaves 0.
\frac{3}{8}x^{2}-\frac{9}{20}x+\frac{2}{15}=0
Subtract -\frac{2}{15} from 0.
x=\frac{-\left(-\frac{9}{20}\right)±\sqrt{\left(-\frac{9}{20}\right)^{2}-4\times \frac{3}{8}\times \frac{2}{15}}}{2\times \frac{3}{8}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{8} for a, -\frac{9}{20} for b, and \frac{2}{15} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{20}\right)±\sqrt{\frac{81}{400}-4\times \frac{3}{8}\times \frac{2}{15}}}{2\times \frac{3}{8}}
Square -\frac{9}{20} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{9}{20}\right)±\sqrt{\frac{81}{400}-\frac{3}{2}\times \frac{2}{15}}}{2\times \frac{3}{8}}
Multiply -4 times \frac{3}{8}.
x=\frac{-\left(-\frac{9}{20}\right)±\sqrt{\frac{81}{400}-\frac{1}{5}}}{2\times \frac{3}{8}}
Multiply -\frac{3}{2} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{9}{20}\right)±\sqrt{\frac{1}{400}}}{2\times \frac{3}{8}}
Add \frac{81}{400} to -\frac{1}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{9}{20}\right)±\frac{1}{20}}{2\times \frac{3}{8}}
Take the square root of \frac{1}{400}.
x=\frac{\frac{9}{20}±\frac{1}{20}}{2\times \frac{3}{8}}
The opposite of -\frac{9}{20} is \frac{9}{20}.
x=\frac{\frac{9}{20}±\frac{1}{20}}{\frac{3}{4}}
Multiply 2 times \frac{3}{8}.
x=\frac{\frac{1}{2}}{\frac{3}{4}}
Now solve the equation x=\frac{\frac{9}{20}±\frac{1}{20}}{\frac{3}{4}} when ± is plus. Add \frac{9}{20} to \frac{1}{20} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{3}
Divide \frac{1}{2} by \frac{3}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{4}.
x=\frac{\frac{2}{5}}{\frac{3}{4}}
Now solve the equation x=\frac{\frac{9}{20}±\frac{1}{20}}{\frac{3}{4}} when ± is minus. Subtract \frac{1}{20} from \frac{9}{20} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{8}{15}
Divide \frac{2}{5} by \frac{3}{4} by multiplying \frac{2}{5} by the reciprocal of \frac{3}{4}.
x=\frac{2}{3} x=\frac{8}{15}
The equation is now solved.
\frac{3}{8}x^{2}-\frac{9}{20}x=-\frac{2}{15}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{8}x^{2}-\frac{9}{20}x}{\frac{3}{8}}=-\frac{\frac{2}{15}}{\frac{3}{8}}
Divide both sides of the equation by \frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{9}{20}}{\frac{3}{8}}\right)x=-\frac{\frac{2}{15}}{\frac{3}{8}}
Dividing by \frac{3}{8} undoes the multiplication by \frac{3}{8}.
x^{2}-\frac{6}{5}x=-\frac{\frac{2}{15}}{\frac{3}{8}}
Divide -\frac{9}{20} by \frac{3}{8} by multiplying -\frac{9}{20} by the reciprocal of \frac{3}{8}.
x^{2}-\frac{6}{5}x=-\frac{16}{45}
Divide -\frac{2}{15} by \frac{3}{8} by multiplying -\frac{2}{15} by the reciprocal of \frac{3}{8}.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=-\frac{16}{45}+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{5}x+\frac{9}{25}=-\frac{16}{45}+\frac{9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{1}{225}
Add -\frac{16}{45} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{5}\right)^{2}=\frac{1}{225}
Factor x^{2}-\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{1}{225}}
Take the square root of both sides of the equation.
x-\frac{3}{5}=\frac{1}{15} x-\frac{3}{5}=-\frac{1}{15}
Simplify.
x=\frac{2}{3} x=\frac{8}{15}
Add \frac{3}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}