Verify
false
Share
Copied to clipboard
\frac{3}{8}\times \frac{16}{5}=\frac{\frac{3}{4}}{\frac{8}{5}}
Divide \frac{3}{8} by \frac{5}{16} by multiplying \frac{3}{8} by the reciprocal of \frac{5}{16}.
\frac{3\times 16}{8\times 5}=\frac{\frac{3}{4}}{\frac{8}{5}}
Multiply \frac{3}{8} times \frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{48}{40}=\frac{\frac{3}{4}}{\frac{8}{5}}
Do the multiplications in the fraction \frac{3\times 16}{8\times 5}.
\frac{6}{5}=\frac{\frac{3}{4}}{\frac{8}{5}}
Reduce the fraction \frac{48}{40} to lowest terms by extracting and canceling out 8.
\frac{6}{5}=\frac{3}{4}\times \frac{5}{8}
Divide \frac{3}{4} by \frac{8}{5} by multiplying \frac{3}{4} by the reciprocal of \frac{8}{5}.
\frac{6}{5}=\frac{3\times 5}{4\times 8}
Multiply \frac{3}{4} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}=\frac{15}{32}
Do the multiplications in the fraction \frac{3\times 5}{4\times 8}.
\frac{192}{160}=\frac{75}{160}
Least common multiple of 5 and 32 is 160. Convert \frac{6}{5} and \frac{15}{32} to fractions with denominator 160.
\text{false}
Compare \frac{192}{160} and \frac{75}{160}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}