Solve for x
x=-2
Graph
Share
Copied to clipboard
5\left(2x-1\right)\times \frac{3}{5}+5\times 3=0
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 5\left(2x-1\right), the least common multiple of 5,2x-1.
\left(10x-5\right)\times \frac{3}{5}+5\times 3=0
Use the distributive property to multiply 5 by 2x-1.
6x-3+5\times 3=0
Use the distributive property to multiply 10x-5 by \frac{3}{5}.
6x-3+15=0
Multiply 5 and 3 to get 15.
6x+12=0
Add -3 and 15 to get 12.
6x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-12}{6}
Divide both sides by 6.
x=-2
Divide -12 by 6 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}