Evaluate
\frac{7\sqrt{2}}{10}\approx 0.989949494
Share
Copied to clipboard
\frac{3\sqrt{2}}{5\times 2}-\left(-\frac{4}{5}\times \frac{\sqrt{2}}{2}\right)
Multiply \frac{3}{5} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{2}}{5\times 2}-\frac{-4\sqrt{2}}{5\times 2}
Multiply -\frac{4}{5} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{2}}{5\times 2}-\frac{-2\sqrt{2}}{5}
Cancel out 2 in both numerator and denominator.
\frac{3\sqrt{2}}{2\times 5}-\frac{2\left(-2\right)\sqrt{2}}{2\times 5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\times 2 and 5 is 2\times 5. Multiply \frac{-2\sqrt{2}}{5} times \frac{2}{2}.
\frac{3\sqrt{2}-2\left(-2\right)\sqrt{2}}{2\times 5}
Since \frac{3\sqrt{2}}{2\times 5} and \frac{2\left(-2\right)\sqrt{2}}{2\times 5} have the same denominator, subtract them by subtracting their numerators.
\frac{3\sqrt{2}+4\sqrt{2}}{2\times 5}
Do the multiplications in 3\sqrt{2}-2\left(-2\right)\sqrt{2}.
\frac{7\sqrt{2}}{2\times 5}
Do the calculations in 3\sqrt{2}+4\sqrt{2}.
\frac{7\sqrt{2}}{10}
Expand 2\times 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}