Solve for x
x<\frac{3}{8}
Graph
Share
Copied to clipboard
6x-20x>2\left(x-3\right)
Multiply both sides of the equation by 8, the least common multiple of 4,2,8. Since 8 is positive, the inequality direction remains the same.
-14x>2\left(x-3\right)
Combine 6x and -20x to get -14x.
-14x>2x-6
Use the distributive property to multiply 2 by x-3.
-14x-2x>-6
Subtract 2x from both sides.
-16x>-6
Combine -14x and -2x to get -16x.
x<\frac{-6}{-16}
Divide both sides by -16. Since -16 is negative, the inequality direction is changed.
x<\frac{3}{8}
Reduce the fraction \frac{-6}{-16} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}