Solve for x
x=16
x=-16
Graph
Share
Copied to clipboard
\frac{3}{4}x^{2}=192
Multiply x and x to get x^{2}.
x^{2}=192\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
x^{2}=\frac{192\times 4}{3}
Express 192\times \frac{4}{3} as a single fraction.
x^{2}=\frac{768}{3}
Multiply 192 and 4 to get 768.
x^{2}=256
Divide 768 by 3 to get 256.
x=16 x=-16
Take the square root of both sides of the equation.
\frac{3}{4}x^{2}=192
Multiply x and x to get x^{2}.
\frac{3}{4}x^{2}-192=0
Subtract 192 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{4}\left(-192\right)}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, 0 for b, and -192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3}{4}\left(-192\right)}}{2\times \frac{3}{4}}
Square 0.
x=\frac{0±\sqrt{-3\left(-192\right)}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
x=\frac{0±\sqrt{576}}{2\times \frac{3}{4}}
Multiply -3 times -192.
x=\frac{0±24}{2\times \frac{3}{4}}
Take the square root of 576.
x=\frac{0±24}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
x=16
Now solve the equation x=\frac{0±24}{\frac{3}{2}} when ± is plus. Divide 24 by \frac{3}{2} by multiplying 24 by the reciprocal of \frac{3}{2}.
x=-16
Now solve the equation x=\frac{0±24}{\frac{3}{2}} when ± is minus. Divide -24 by \frac{3}{2} by multiplying -24 by the reciprocal of \frac{3}{2}.
x=16 x=-16
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}