Solve for k
k = \frac{33}{5} = 6\frac{3}{5} = 6.6
Share
Copied to clipboard
\frac{3}{4}\times 16=45-5k
Multiply both sides by 16.
\frac{3\times 16}{4}=45-5k
Express \frac{3}{4}\times 16 as a single fraction.
\frac{48}{4}=45-5k
Multiply 3 and 16 to get 48.
12=45-5k
Divide 48 by 4 to get 12.
45-5k=12
Swap sides so that all variable terms are on the left hand side.
-5k=12-45
Subtract 45 from both sides.
-5k=-33
Subtract 45 from 12 to get -33.
k=\frac{-33}{-5}
Divide both sides by -5.
k=\frac{33}{5}
Fraction \frac{-33}{-5} can be simplified to \frac{33}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}