Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(-2x+3\right)}{\left(3x-5\right)\left(-2x+3\right)}+\frac{2\left(3x-5\right)}{\left(3x-5\right)\left(-2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x-5 and 3-2x is \left(3x-5\right)\left(-2x+3\right). Multiply \frac{3}{3x-5} times \frac{-2x+3}{-2x+3}. Multiply \frac{2}{3-2x} times \frac{3x-5}{3x-5}.
\frac{3\left(-2x+3\right)+2\left(3x-5\right)}{\left(3x-5\right)\left(-2x+3\right)}
Since \frac{3\left(-2x+3\right)}{\left(3x-5\right)\left(-2x+3\right)} and \frac{2\left(3x-5\right)}{\left(3x-5\right)\left(-2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-6x+9+6x-10}{\left(3x-5\right)\left(-2x+3\right)}
Do the multiplications in 3\left(-2x+3\right)+2\left(3x-5\right).
\frac{-1}{\left(3x-5\right)\left(-2x+3\right)}
Combine like terms in -6x+9+6x-10.
\frac{-1}{-6x^{2}+19x-15}
Expand \left(3x-5\right)\left(-2x+3\right).