Solve for x
x=-2
x=75
Graph
Share
Copied to clipboard
\left(-75-15x\right)\times 3+\left(15x-45\right)\times 2+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Variable x cannot be equal to any of the values -5,3 since division by zero is not defined. Multiply both sides of the equation by 15\left(x-3\right)\left(x+5\right), the least common multiple of 3-x,5+x,15.
-225-45x+\left(15x-45\right)\times 2+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Use the distributive property to multiply -75-15x by 3.
-225-45x+30x-90+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Use the distributive property to multiply 15x-45 by 2.
-225-15x-90+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Combine -45x and 30x to get -15x.
-315-15x+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Subtract 90 from -225 to get -315.
-315-15x-\left(x-3\right)\left(x+5\right)=\left(-75-15x\right)\times 6
Multiply 15 and -\frac{1}{15} to get -1.
-315-15x+\left(-x+3\right)\left(x+5\right)=\left(-75-15x\right)\times 6
Use the distributive property to multiply -1 by x-3.
-315-15x-x^{2}-2x+15=\left(-75-15x\right)\times 6
Use the distributive property to multiply -x+3 by x+5 and combine like terms.
-315-17x-x^{2}+15=\left(-75-15x\right)\times 6
Combine -15x and -2x to get -17x.
-300-17x-x^{2}=\left(-75-15x\right)\times 6
Add -315 and 15 to get -300.
-300-17x-x^{2}=-450-90x
Use the distributive property to multiply -75-15x by 6.
-300-17x-x^{2}-\left(-450\right)=-90x
Subtract -450 from both sides.
-300-17x-x^{2}+450=-90x
The opposite of -450 is 450.
-300-17x-x^{2}+450+90x=0
Add 90x to both sides.
150-17x-x^{2}+90x=0
Add -300 and 450 to get 150.
150+73x-x^{2}=0
Combine -17x and 90x to get 73x.
-x^{2}+73x+150=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-73±\sqrt{73^{2}-4\left(-1\right)\times 150}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 73 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-73±\sqrt{5329-4\left(-1\right)\times 150}}{2\left(-1\right)}
Square 73.
x=\frac{-73±\sqrt{5329+4\times 150}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-73±\sqrt{5329+600}}{2\left(-1\right)}
Multiply 4 times 150.
x=\frac{-73±\sqrt{5929}}{2\left(-1\right)}
Add 5329 to 600.
x=\frac{-73±77}{2\left(-1\right)}
Take the square root of 5929.
x=\frac{-73±77}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{-73±77}{-2} when ± is plus. Add -73 to 77.
x=-2
Divide 4 by -2.
x=-\frac{150}{-2}
Now solve the equation x=\frac{-73±77}{-2} when ± is minus. Subtract 77 from -73.
x=75
Divide -150 by -2.
x=-2 x=75
The equation is now solved.
\left(-75-15x\right)\times 3+\left(15x-45\right)\times 2+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Variable x cannot be equal to any of the values -5,3 since division by zero is not defined. Multiply both sides of the equation by 15\left(x-3\right)\left(x+5\right), the least common multiple of 3-x,5+x,15.
-225-45x+\left(15x-45\right)\times 2+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Use the distributive property to multiply -75-15x by 3.
-225-45x+30x-90+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Use the distributive property to multiply 15x-45 by 2.
-225-15x-90+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Combine -45x and 30x to get -15x.
-315-15x+15\left(x-3\right)\left(x+5\right)\left(-\frac{1}{15}\right)=\left(-75-15x\right)\times 6
Subtract 90 from -225 to get -315.
-315-15x-\left(x-3\right)\left(x+5\right)=\left(-75-15x\right)\times 6
Multiply 15 and -\frac{1}{15} to get -1.
-315-15x+\left(-x+3\right)\left(x+5\right)=\left(-75-15x\right)\times 6
Use the distributive property to multiply -1 by x-3.
-315-15x-x^{2}-2x+15=\left(-75-15x\right)\times 6
Use the distributive property to multiply -x+3 by x+5 and combine like terms.
-315-17x-x^{2}+15=\left(-75-15x\right)\times 6
Combine -15x and -2x to get -17x.
-300-17x-x^{2}=\left(-75-15x\right)\times 6
Add -315 and 15 to get -300.
-300-17x-x^{2}=-450-90x
Use the distributive property to multiply -75-15x by 6.
-300-17x-x^{2}+90x=-450
Add 90x to both sides.
-300+73x-x^{2}=-450
Combine -17x and 90x to get 73x.
73x-x^{2}=-450+300
Add 300 to both sides.
73x-x^{2}=-150
Add -450 and 300 to get -150.
-x^{2}+73x=-150
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+73x}{-1}=-\frac{150}{-1}
Divide both sides by -1.
x^{2}+\frac{73}{-1}x=-\frac{150}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-73x=-\frac{150}{-1}
Divide 73 by -1.
x^{2}-73x=150
Divide -150 by -1.
x^{2}-73x+\left(-\frac{73}{2}\right)^{2}=150+\left(-\frac{73}{2}\right)^{2}
Divide -73, the coefficient of the x term, by 2 to get -\frac{73}{2}. Then add the square of -\frac{73}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-73x+\frac{5329}{4}=150+\frac{5329}{4}
Square -\frac{73}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-73x+\frac{5329}{4}=\frac{5929}{4}
Add 150 to \frac{5329}{4}.
\left(x-\frac{73}{2}\right)^{2}=\frac{5929}{4}
Factor x^{2}-73x+\frac{5329}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{73}{2}\right)^{2}}=\sqrt{\frac{5929}{4}}
Take the square root of both sides of the equation.
x-\frac{73}{2}=\frac{77}{2} x-\frac{73}{2}=-\frac{77}{2}
Simplify.
x=75 x=-2
Add \frac{73}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}