Evaluate
\frac{b^{3}+10b^{2}-33b-126}{2\left(b+2\right)\left(b^{2}-9\right)}
Expand
\frac{b^{3}+10b^{2}-33b-126}{2\left(b+3\right)\left(b^{2}-b-6\right)}
Share
Copied to clipboard
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\frac{2}{-4}
Subtract 6 from 2 to get -4.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\left(-\frac{1}{2}\right)
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3}{3+b}-\frac{12-b}{\left(b-3\right)\left(b+2\right)}+\frac{1}{2}
Factor b^{2}-b-6.
\frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}-\frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3+b and \left(b-3\right)\left(b+2\right) is \left(b-3\right)\left(b+2\right)\left(b+3\right). Multiply \frac{3}{3+b} times \frac{\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)}. Multiply \frac{12-b}{\left(b-3\right)\left(b+2\right)} times \frac{b+3}{b+3}.
\frac{3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Since \frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} and \frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3b^{2}+6b-9b-18-12b-36+b^{2}+3b}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Do the multiplications in 3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right).
\frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Combine like terms in 3b^{2}+6b-9b-18-12b-36+b^{2}+3b.
\frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-3\right)\left(b+2\right)\left(b+3\right) and 2 is 2\left(b-3\right)\left(b+2\right)\left(b+3\right). Multiply \frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}.
\frac{2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Since \frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} and \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} have the same denominator, add them by adding their numerators.
\frac{8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Do the multiplications in 2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right).
\frac{10b^{2}-33b-126+b^{3}}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Combine like terms in 8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18.
\frac{10b^{2}-33b-126+b^{3}}{2b^{3}+4b^{2}-18b-36}
Expand 2\left(b-3\right)\left(b+2\right)\left(b+3\right).
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\frac{2}{-4}
Subtract 6 from 2 to get -4.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\left(-\frac{1}{2}\right)
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3}{3+b}-\frac{12-b}{\left(b-3\right)\left(b+2\right)}+\frac{1}{2}
Factor b^{2}-b-6.
\frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}-\frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3+b and \left(b-3\right)\left(b+2\right) is \left(b-3\right)\left(b+2\right)\left(b+3\right). Multiply \frac{3}{3+b} times \frac{\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)}. Multiply \frac{12-b}{\left(b-3\right)\left(b+2\right)} times \frac{b+3}{b+3}.
\frac{3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Since \frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} and \frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3b^{2}+6b-9b-18-12b-36+b^{2}+3b}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Do the multiplications in 3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right).
\frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Combine like terms in 3b^{2}+6b-9b-18-12b-36+b^{2}+3b.
\frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-3\right)\left(b+2\right)\left(b+3\right) and 2 is 2\left(b-3\right)\left(b+2\right)\left(b+3\right). Multiply \frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}.
\frac{2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Since \frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} and \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} have the same denominator, add them by adding their numerators.
\frac{8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Do the multiplications in 2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right).
\frac{10b^{2}-33b-126+b^{3}}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Combine like terms in 8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18.
\frac{10b^{2}-33b-126+b^{3}}{2b^{3}+4b^{2}-18b-36}
Expand 2\left(b-3\right)\left(b+2\right)\left(b+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}