\frac{ 3 }{ 3+ { y }^{ } } = \frac{ 3 }{ 5 }
Solve for y
y=2
Graph
Share
Copied to clipboard
5\times 3=3\left(y+3\right)
Variable y cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 5\left(y+3\right), the least common multiple of 3+y^{1},5.
15=3\left(y+3\right)
Multiply 5 and 3 to get 15.
15=3y+9
Use the distributive property to multiply 3 by y+3.
3y+9=15
Swap sides so that all variable terms are on the left hand side.
3y=15-9
Subtract 9 from both sides.
3y=6
Subtract 9 from 15 to get 6.
y=\frac{6}{3}
Divide both sides by 3.
y=2
Divide 6 by 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}