Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x^{2}}{2x\left(6x+10\right)}
Multiply \frac{3}{2x} times \frac{x^{2}}{6x+10} by multiplying numerator times numerator and denominator times denominator.
\frac{3x}{2\left(6x+10\right)}
Cancel out x in both numerator and denominator.
\frac{3x}{12x+20}
Use the distributive property to multiply 2 by 6x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{2}}{2x\left(6x+10\right)})
Multiply \frac{3}{2x} times \frac{x^{2}}{6x+10} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{2\left(6x+10\right)})
Cancel out x in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{12x+20})
Use the distributive property to multiply 2 by 6x+10.
\frac{\left(12x^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1}+20)}{\left(12x^{1}+20\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(12x^{1}+20\right)\times 3x^{1-1}-3x^{1}\times 12x^{1-1}}{\left(12x^{1}+20\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(12x^{1}+20\right)\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Do the arithmetic.
\frac{12x^{1}\times 3x^{0}+20\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Expand using distributive property.
\frac{12\times 3x^{1}+20\times 3x^{0}-3\times 12x^{1}}{\left(12x^{1}+20\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{36x^{1}+60x^{0}-36x^{1}}{\left(12x^{1}+20\right)^{2}}
Do the arithmetic.
\frac{\left(36-36\right)x^{1}+60x^{0}}{\left(12x^{1}+20\right)^{2}}
Combine like terms.
\frac{60x^{0}}{\left(12x^{1}+20\right)^{2}}
Subtract 36 from 36.
\frac{60x^{0}}{\left(12x+20\right)^{2}}
For any term t, t^{1}=t.
\frac{60\times 1}{\left(12x+20\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{60}{\left(12x+20\right)^{2}}
For any term t, t\times 1=t and 1t=t.