Evaluate
\frac{59}{10}=5.9
Factor
\frac{59}{2 \cdot 5} = 5\frac{9}{10} = 5.9
Share
Copied to clipboard
0+\frac{5}{20}\times 1+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Multiply \frac{3}{20} and 0 to get 0.
0+\frac{1}{4}\times 1+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
0+\frac{1}{4}+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{4} and 1 to get \frac{1}{4}.
\frac{1}{4}+\frac{5}{20}\times 4+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Add 0 and \frac{1}{4} to get \frac{1}{4}.
\frac{1}{4}+\frac{1}{4}\times 4+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
\frac{1}{4}+1+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Cancel out 4 and 4.
\frac{1}{4}+\frac{4}{4}+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Convert 1 to fraction \frac{4}{4}.
\frac{1+4}{4}+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Since \frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4}+\frac{4}{20}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Add 1 and 4 to get 5.
\frac{5}{4}+\frac{1}{5}\times 9+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
\frac{5}{4}+\frac{9}{5}+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Multiply \frac{1}{5} and 9 to get \frac{9}{5}.
\frac{25}{20}+\frac{36}{20}+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{9}{5} to fractions with denominator 20.
\frac{25+36}{20}+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Since \frac{25}{20} and \frac{36}{20} have the same denominator, add them by adding their numerators.
\frac{61}{20}+\frac{2}{20}\times 16+\frac{1}{20}\times 25
Add 25 and 36 to get 61.
\frac{61}{20}+\frac{1}{10}\times 16+\frac{1}{20}\times 25
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{61}{20}+\frac{16}{10}+\frac{1}{20}\times 25
Multiply \frac{1}{10} and 16 to get \frac{16}{10}.
\frac{61}{20}+\frac{8}{5}+\frac{1}{20}\times 25
Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
\frac{61}{20}+\frac{32}{20}+\frac{1}{20}\times 25
Least common multiple of 20 and 5 is 20. Convert \frac{61}{20} and \frac{8}{5} to fractions with denominator 20.
\frac{61+32}{20}+\frac{1}{20}\times 25
Since \frac{61}{20} and \frac{32}{20} have the same denominator, add them by adding their numerators.
\frac{93}{20}+\frac{1}{20}\times 25
Add 61 and 32 to get 93.
\frac{93}{20}+\frac{25}{20}
Multiply \frac{1}{20} and 25 to get \frac{25}{20}.
\frac{93+25}{20}
Since \frac{93}{20} and \frac{25}{20} have the same denominator, add them by adding their numerators.
\frac{118}{20}
Add 93 and 25 to get 118.
\frac{59}{10}
Reduce the fraction \frac{118}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}