Evaluate
-\frac{31}{40}=-0.775
Factor
-\frac{31}{40} = -0.775
Share
Copied to clipboard
\frac{3}{2}-1-\frac{1}{10}\times \frac{3}{4}-\frac{6}{5}
Cancel out 5 and 5.
\frac{3}{2}-\frac{2}{2}-\frac{1}{10}\times \frac{3}{4}-\frac{6}{5}
Convert 1 to fraction \frac{2}{2}.
\frac{3-2}{2}-\frac{1}{10}\times \frac{3}{4}-\frac{6}{5}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\frac{1}{10}\times \frac{3}{4}-\frac{6}{5}
Subtract 2 from 3 to get 1.
\frac{1}{2}-\frac{1\times 3}{10\times 4}-\frac{6}{5}
Multiply \frac{1}{10} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}-\frac{3}{40}-\frac{6}{5}
Do the multiplications in the fraction \frac{1\times 3}{10\times 4}.
\frac{20}{40}-\frac{3}{40}-\frac{6}{5}
Least common multiple of 2 and 40 is 40. Convert \frac{1}{2} and \frac{3}{40} to fractions with denominator 40.
\frac{20-3}{40}-\frac{6}{5}
Since \frac{20}{40} and \frac{3}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{40}-\frac{6}{5}
Subtract 3 from 20 to get 17.
\frac{17}{40}-\frac{48}{40}
Least common multiple of 40 and 5 is 40. Convert \frac{17}{40} and \frac{6}{5} to fractions with denominator 40.
\frac{17-48}{40}
Since \frac{17}{40} and \frac{48}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{40}
Subtract 48 from 17 to get -31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}