Solve for x
x=-\frac{3}{28}\approx -0.107142857
Graph
Share
Copied to clipboard
\frac{3}{2}\times 4x+\frac{3}{2}\left(-3\right)=2\left(-4x-3\right)
Use the distributive property to multiply \frac{3}{2} by 4x-3.
\frac{3\times 4}{2}x+\frac{3}{2}\left(-3\right)=2\left(-4x-3\right)
Express \frac{3}{2}\times 4 as a single fraction.
\frac{12}{2}x+\frac{3}{2}\left(-3\right)=2\left(-4x-3\right)
Multiply 3 and 4 to get 12.
6x+\frac{3}{2}\left(-3\right)=2\left(-4x-3\right)
Divide 12 by 2 to get 6.
6x+\frac{3\left(-3\right)}{2}=2\left(-4x-3\right)
Express \frac{3}{2}\left(-3\right) as a single fraction.
6x+\frac{-9}{2}=2\left(-4x-3\right)
Multiply 3 and -3 to get -9.
6x-\frac{9}{2}=2\left(-4x-3\right)
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
6x-\frac{9}{2}=-8x-6
Use the distributive property to multiply 2 by -4x-3.
6x-\frac{9}{2}+8x=-6
Add 8x to both sides.
14x-\frac{9}{2}=-6
Combine 6x and 8x to get 14x.
14x=-6+\frac{9}{2}
Add \frac{9}{2} to both sides.
14x=-\frac{12}{2}+\frac{9}{2}
Convert -6 to fraction -\frac{12}{2}.
14x=\frac{-12+9}{2}
Since -\frac{12}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
14x=-\frac{3}{2}
Add -12 and 9 to get -3.
x=\frac{-\frac{3}{2}}{14}
Divide both sides by 14.
x=\frac{-3}{2\times 14}
Express \frac{-\frac{3}{2}}{14} as a single fraction.
x=\frac{-3}{28}
Multiply 2 and 14 to get 28.
x=-\frac{3}{28}
Fraction \frac{-3}{28} can be rewritten as -\frac{3}{28} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}