Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Multiply 2 and \frac{3}{2} to get 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Add 2625 and \frac{3}{2} to get \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Multiply 4 and \frac{5253}{2} to get 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Multiply 2 and 300 to get 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Multiply 2 and \frac{1}{2} to get 1.
3x+10506x\left(x+25\right)^{-1}-600=x
Subtract 600 from both sides.
3x+10506x\left(x+25\right)^{-1}-600-x=0
Subtract x from both sides.
2x+10506x\left(x+25\right)^{-1}-600=0
Combine 3x and -x to get 2x.
2x+10506\times \frac{1}{x+25}x-600=0
Reorder the terms.
2x\left(x+25\right)+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Variable x cannot be equal to -25 since division by zero is not defined. Multiply both sides of the equation by x+25.
2x^{2}+50x+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Use the distributive property to multiply 2x by x+25.
2x^{2}+50x+10506x+\left(x+25\right)\left(-600\right)=0
Multiply 10506 and 1 to get 10506.
2x^{2}+10556x+\left(x+25\right)\left(-600\right)=0
Combine 50x and 10506x to get 10556x.
2x^{2}+10556x-600x-15000=0
Use the distributive property to multiply x+25 by -600.
2x^{2}+9956x-15000=0
Combine 10556x and -600x to get 9956x.
x=\frac{-9956±\sqrt{9956^{2}-4\times 2\left(-15000\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 9956 for b, and -15000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9956±\sqrt{99121936-4\times 2\left(-15000\right)}}{2\times 2}
Square 9956.
x=\frac{-9956±\sqrt{99121936-8\left(-15000\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-9956±\sqrt{99121936+120000}}{2\times 2}
Multiply -8 times -15000.
x=\frac{-9956±\sqrt{99241936}}{2\times 2}
Add 99121936 to 120000.
x=\frac{-9956±4\sqrt{6202621}}{2\times 2}
Take the square root of 99241936.
x=\frac{-9956±4\sqrt{6202621}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{6202621}-9956}{4}
Now solve the equation x=\frac{-9956±4\sqrt{6202621}}{4} when ± is plus. Add -9956 to 4\sqrt{6202621}.
x=\sqrt{6202621}-2489
Divide -9956+4\sqrt{6202621} by 4.
x=\frac{-4\sqrt{6202621}-9956}{4}
Now solve the equation x=\frac{-9956±4\sqrt{6202621}}{4} when ± is minus. Subtract 4\sqrt{6202621} from -9956.
x=-\sqrt{6202621}-2489
Divide -9956-4\sqrt{6202621} by 4.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
The equation is now solved.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Multiply 2 and \frac{3}{2} to get 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Add 2625 and \frac{3}{2} to get \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Multiply 4 and \frac{5253}{2} to get 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Multiply 2 and 300 to get 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Multiply 2 and \frac{1}{2} to get 1.
3x+10506x\left(x+25\right)^{-1}-x=600
Subtract x from both sides.
2x+10506x\left(x+25\right)^{-1}=600
Combine 3x and -x to get 2x.
2x+10506\times \frac{1}{x+25}x=600
Reorder the terms.
2x\left(x+25\right)+10506\times 1x=600\left(x+25\right)
Variable x cannot be equal to -25 since division by zero is not defined. Multiply both sides of the equation by x+25.
2x^{2}+50x+10506\times 1x=600\left(x+25\right)
Use the distributive property to multiply 2x by x+25.
2x^{2}+50x+10506x=600\left(x+25\right)
Multiply 10506 and 1 to get 10506.
2x^{2}+10556x=600\left(x+25\right)
Combine 50x and 10506x to get 10556x.
2x^{2}+10556x=600x+15000
Use the distributive property to multiply 600 by x+25.
2x^{2}+10556x-600x=15000
Subtract 600x from both sides.
2x^{2}+9956x=15000
Combine 10556x and -600x to get 9956x.
\frac{2x^{2}+9956x}{2}=\frac{15000}{2}
Divide both sides by 2.
x^{2}+\frac{9956}{2}x=\frac{15000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4978x=\frac{15000}{2}
Divide 9956 by 2.
x^{2}+4978x=7500
Divide 15000 by 2.
x^{2}+4978x+2489^{2}=7500+2489^{2}
Divide 4978, the coefficient of the x term, by 2 to get 2489. Then add the square of 2489 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4978x+6195121=7500+6195121
Square 2489.
x^{2}+4978x+6195121=6202621
Add 7500 to 6195121.
\left(x+2489\right)^{2}=6202621
Factor x^{2}+4978x+6195121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2489\right)^{2}}=\sqrt{6202621}
Take the square root of both sides of the equation.
x+2489=\sqrt{6202621} x+2489=-\sqrt{6202621}
Simplify.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Subtract 2489 from both sides of the equation.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Multiply 2 and \frac{3}{2} to get 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Add 2625 and \frac{3}{2} to get \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Multiply 4 and \frac{5253}{2} to get 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Multiply 2 and 300 to get 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Multiply 2 and \frac{1}{2} to get 1.
3x+10506x\left(x+25\right)^{-1}-600=x
Subtract 600 from both sides.
3x+10506x\left(x+25\right)^{-1}-600-x=0
Subtract x from both sides.
2x+10506x\left(x+25\right)^{-1}-600=0
Combine 3x and -x to get 2x.
2x+10506\times \frac{1}{x+25}x-600=0
Reorder the terms.
2x\left(x+25\right)+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Variable x cannot be equal to -25 since division by zero is not defined. Multiply both sides of the equation by x+25.
2x^{2}+50x+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Use the distributive property to multiply 2x by x+25.
2x^{2}+50x+10506x+\left(x+25\right)\left(-600\right)=0
Multiply 10506 and 1 to get 10506.
2x^{2}+10556x+\left(x+25\right)\left(-600\right)=0
Combine 50x and 10506x to get 10556x.
2x^{2}+10556x-600x-15000=0
Use the distributive property to multiply x+25 by -600.
2x^{2}+9956x-15000=0
Combine 10556x and -600x to get 9956x.
x=\frac{-9956±\sqrt{9956^{2}-4\times 2\left(-15000\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 9956 for b, and -15000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9956±\sqrt{99121936-4\times 2\left(-15000\right)}}{2\times 2}
Square 9956.
x=\frac{-9956±\sqrt{99121936-8\left(-15000\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-9956±\sqrt{99121936+120000}}{2\times 2}
Multiply -8 times -15000.
x=\frac{-9956±\sqrt{99241936}}{2\times 2}
Add 99121936 to 120000.
x=\frac{-9956±4\sqrt{6202621}}{2\times 2}
Take the square root of 99241936.
x=\frac{-9956±4\sqrt{6202621}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{6202621}-9956}{4}
Now solve the equation x=\frac{-9956±4\sqrt{6202621}}{4} when ± is plus. Add -9956 to 4\sqrt{6202621}.
x=\sqrt{6202621}-2489
Divide -9956+4\sqrt{6202621} by 4.
x=\frac{-4\sqrt{6202621}-9956}{4}
Now solve the equation x=\frac{-9956±4\sqrt{6202621}}{4} when ± is minus. Subtract 4\sqrt{6202621} from -9956.
x=-\sqrt{6202621}-2489
Divide -9956-4\sqrt{6202621} by 4.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
The equation is now solved.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Multiply 2 and \frac{3}{2} to get 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Add 2625 and \frac{3}{2} to get \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Multiply 4 and \frac{5253}{2} to get 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Multiply 2 and 300 to get 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Multiply 2 and \frac{1}{2} to get 1.
3x+10506x\left(x+25\right)^{-1}-x=600
Subtract x from both sides.
2x+10506x\left(x+25\right)^{-1}=600
Combine 3x and -x to get 2x.
2x+10506\times \frac{1}{x+25}x=600
Reorder the terms.
2x\left(x+25\right)+10506\times 1x=600\left(x+25\right)
Variable x cannot be equal to -25 since division by zero is not defined. Multiply both sides of the equation by x+25.
2x^{2}+50x+10506\times 1x=600\left(x+25\right)
Use the distributive property to multiply 2x by x+25.
2x^{2}+50x+10506x=600\left(x+25\right)
Multiply 10506 and 1 to get 10506.
2x^{2}+10556x=600\left(x+25\right)
Combine 50x and 10506x to get 10556x.
2x^{2}+10556x=600x+15000
Use the distributive property to multiply 600 by x+25.
2x^{2}+10556x-600x=15000
Subtract 600x from both sides.
2x^{2}+9956x=15000
Combine 10556x and -600x to get 9956x.
\frac{2x^{2}+9956x}{2}=\frac{15000}{2}
Divide both sides by 2.
x^{2}+\frac{9956}{2}x=\frac{15000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4978x=\frac{15000}{2}
Divide 9956 by 2.
x^{2}+4978x=7500
Divide 15000 by 2.
x^{2}+4978x+2489^{2}=7500+2489^{2}
Divide 4978, the coefficient of the x term, by 2 to get 2489. Then add the square of 2489 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4978x+6195121=7500+6195121
Square 2489.
x^{2}+4978x+6195121=6202621
Add 7500 to 6195121.
\left(x+2489\right)^{2}=6202621
Factor x^{2}+4978x+6195121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2489\right)^{2}}=\sqrt{6202621}
Take the square root of both sides of the equation.
x+2489=\sqrt{6202621} x+2489=-\sqrt{6202621}
Simplify.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Subtract 2489 from both sides of the equation.