Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(262.5+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3x+4x\left(x+25\right)^{-1}\left(262.5+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Multiply 2 and \frac{3}{2} to get 3.
3x+4x\left(x+25\right)^{-1}\times 264=2\times 300+2x\times \frac{1}{2}
Add 262.5 and \frac{3}{2} to get 264.
3x+1056x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Multiply 4 and 264 to get 1056.
3x+1056x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Multiply 2 and 300 to get 600.
3x+1056x\left(x+25\right)^{-1}=600+x
Multiply 2 and \frac{1}{2} to get 1.
3x+1056x\left(x+25\right)^{-1}-600=x
Subtract 600 from both sides.
3x+1056x\left(x+25\right)^{-1}-600-x=0
Subtract x from both sides.
2x+1056x\left(x+25\right)^{-1}-600=0
Combine 3x and -x to get 2x.
2x+1056\times \frac{1}{x+25}x-600=0
Reorder the terms.
2x\left(x+25\right)+1056\times 1x+\left(x+25\right)\left(-600\right)=0
Variable x cannot be equal to -25 since division by zero is not defined. Multiply both sides of the equation by x+25.
2x^{2}+50x+1056\times 1x+\left(x+25\right)\left(-600\right)=0
Use the distributive property to multiply 2x by x+25.
2x^{2}+50x+1056x+\left(x+25\right)\left(-600\right)=0
Multiply 1056 and 1 to get 1056.
2x^{2}+1106x+\left(x+25\right)\left(-600\right)=0
Combine 50x and 1056x to get 1106x.
2x^{2}+1106x-600x-15000=0
Use the distributive property to multiply x+25 by -600.
2x^{2}+506x-15000=0
Combine 1106x and -600x to get 506x.
x=\frac{-506±\sqrt{506^{2}-4\times 2\left(-15000\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 506 for b, and -15000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-506±\sqrt{256036-4\times 2\left(-15000\right)}}{2\times 2}
Square 506.
x=\frac{-506±\sqrt{256036-8\left(-15000\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-506±\sqrt{256036+120000}}{2\times 2}
Multiply -8 times -15000.
x=\frac{-506±\sqrt{376036}}{2\times 2}
Add 256036 to 120000.
x=\frac{-506±2\sqrt{94009}}{2\times 2}
Take the square root of 376036.
x=\frac{-506±2\sqrt{94009}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{94009}-506}{4}
Now solve the equation x=\frac{-506±2\sqrt{94009}}{4} when ± is plus. Add -506 to 2\sqrt{94009}.
x=\frac{\sqrt{94009}-253}{2}
Divide -506+2\sqrt{94009} by 4.
x=\frac{-2\sqrt{94009}-506}{4}
Now solve the equation x=\frac{-506±2\sqrt{94009}}{4} when ± is minus. Subtract 2\sqrt{94009} from -506.
x=\frac{-\sqrt{94009}-253}{2}
Divide -506-2\sqrt{94009} by 4.
x=\frac{\sqrt{94009}-253}{2} x=\frac{-\sqrt{94009}-253}{2}
The equation is now solved.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(262.5+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
3x+4x\left(x+25\right)^{-1}\left(262.5+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Multiply 2 and \frac{3}{2} to get 3.
3x+4x\left(x+25\right)^{-1}\times 264=2\times 300+2x\times \frac{1}{2}
Add 262.5 and \frac{3}{2} to get 264.
3x+1056x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Multiply 4 and 264 to get 1056.
3x+1056x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Multiply 2 and 300 to get 600.
3x+1056x\left(x+25\right)^{-1}=600+x
Multiply 2 and \frac{1}{2} to get 1.
3x+1056x\left(x+25\right)^{-1}-x=600
Subtract x from both sides.
2x+1056x\left(x+25\right)^{-1}=600
Combine 3x and -x to get 2x.
2x+1056\times \frac{1}{x+25}x=600
Reorder the terms.
2x\left(x+25\right)+1056\times 1x=600\left(x+25\right)
Variable x cannot be equal to -25 since division by zero is not defined. Multiply both sides of the equation by x+25.
2x^{2}+50x+1056\times 1x=600\left(x+25\right)
Use the distributive property to multiply 2x by x+25.
2x^{2}+50x+1056x=600\left(x+25\right)
Multiply 1056 and 1 to get 1056.
2x^{2}+1106x=600\left(x+25\right)
Combine 50x and 1056x to get 1106x.
2x^{2}+1106x=600x+15000
Use the distributive property to multiply 600 by x+25.
2x^{2}+1106x-600x=15000
Subtract 600x from both sides.
2x^{2}+506x=15000
Combine 1106x and -600x to get 506x.
\frac{2x^{2}+506x}{2}=\frac{15000}{2}
Divide both sides by 2.
x^{2}+\frac{506}{2}x=\frac{15000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+253x=\frac{15000}{2}
Divide 506 by 2.
x^{2}+253x=7500
Divide 15000 by 2.
x^{2}+253x+\left(\frac{253}{2}\right)^{2}=7500+\left(\frac{253}{2}\right)^{2}
Divide 253, the coefficient of the x term, by 2 to get \frac{253}{2}. Then add the square of \frac{253}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+253x+\frac{64009}{4}=7500+\frac{64009}{4}
Square \frac{253}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+253x+\frac{64009}{4}=\frac{94009}{4}
Add 7500 to \frac{64009}{4}.
\left(x+\frac{253}{2}\right)^{2}=\frac{94009}{4}
Factor x^{2}+253x+\frac{64009}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{253}{2}\right)^{2}}=\sqrt{\frac{94009}{4}}
Take the square root of both sides of the equation.
x+\frac{253}{2}=\frac{\sqrt{94009}}{2} x+\frac{253}{2}=-\frac{\sqrt{94009}}{2}
Simplify.
x=\frac{\sqrt{94009}-253}{2} x=\frac{-\sqrt{94009}-253}{2}
Subtract \frac{253}{2} from both sides of the equation.