Solve for k
k=1
Share
Copied to clipboard
\frac{3}{2}\times 2k+\frac{3}{2}\times \frac{4}{3}-4=\frac{5}{4}\left(k-\frac{1}{5}\right)
Use the distributive property to multiply \frac{3}{2} by 2k+\frac{4}{3}.
3k+\frac{3}{2}\times \frac{4}{3}-4=\frac{5}{4}\left(k-\frac{1}{5}\right)
Cancel out 2 and 2.
3k+\frac{3\times 4}{2\times 3}-4=\frac{5}{4}\left(k-\frac{1}{5}\right)
Multiply \frac{3}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
3k+\frac{4}{2}-4=\frac{5}{4}\left(k-\frac{1}{5}\right)
Cancel out 3 in both numerator and denominator.
3k+2-4=\frac{5}{4}\left(k-\frac{1}{5}\right)
Divide 4 by 2 to get 2.
3k-2=\frac{5}{4}\left(k-\frac{1}{5}\right)
Subtract 4 from 2 to get -2.
3k-2=\frac{5}{4}k+\frac{5}{4}\left(-\frac{1}{5}\right)
Use the distributive property to multiply \frac{5}{4} by k-\frac{1}{5}.
3k-2=\frac{5}{4}k+\frac{5\left(-1\right)}{4\times 5}
Multiply \frac{5}{4} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
3k-2=\frac{5}{4}k+\frac{-1}{4}
Cancel out 5 in both numerator and denominator.
3k-2=\frac{5}{4}k-\frac{1}{4}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
3k-2-\frac{5}{4}k=-\frac{1}{4}
Subtract \frac{5}{4}k from both sides.
\frac{7}{4}k-2=-\frac{1}{4}
Combine 3k and -\frac{5}{4}k to get \frac{7}{4}k.
\frac{7}{4}k=-\frac{1}{4}+2
Add 2 to both sides.
\frac{7}{4}k=-\frac{1}{4}+\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{7}{4}k=\frac{-1+8}{4}
Since -\frac{1}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}k=\frac{7}{4}
Add -1 and 8 to get 7.
k=\frac{7}{4}\times \frac{4}{7}
Multiply both sides by \frac{4}{7}, the reciprocal of \frac{7}{4}.
k=1
Cancel out \frac{7}{4} and its reciprocal \frac{4}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}