Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{2}\left(\frac{2}{3}\times \frac{1}{4}x+\frac{2}{3}+2\right)-\frac{5}{2}=\frac{2}{3}x
Use the distributive property to multiply \frac{2}{3} by \frac{1}{4}x+1.
\frac{3}{2}\left(\frac{2\times 1}{3\times 4}x+\frac{2}{3}+2\right)-\frac{5}{2}=\frac{2}{3}x
Multiply \frac{2}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}\left(\frac{2}{12}x+\frac{2}{3}+2\right)-\frac{5}{2}=\frac{2}{3}x
Do the multiplications in the fraction \frac{2\times 1}{3\times 4}.
\frac{3}{2}\left(\frac{1}{6}x+\frac{2}{3}+2\right)-\frac{5}{2}=\frac{2}{3}x
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{2}\left(\frac{1}{6}x+\frac{2}{3}+\frac{6}{3}\right)-\frac{5}{2}=\frac{2}{3}x
Convert 2 to fraction \frac{6}{3}.
\frac{3}{2}\left(\frac{1}{6}x+\frac{2+6}{3}\right)-\frac{5}{2}=\frac{2}{3}x
Since \frac{2}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{3}{2}\left(\frac{1}{6}x+\frac{8}{3}\right)-\frac{5}{2}=\frac{2}{3}x
Add 2 and 6 to get 8.
\frac{3}{2}\times \frac{1}{6}x+\frac{3}{2}\times \frac{8}{3}-\frac{5}{2}=\frac{2}{3}x
Use the distributive property to multiply \frac{3}{2} by \frac{1}{6}x+\frac{8}{3}.
\frac{3\times 1}{2\times 6}x+\frac{3}{2}\times \frac{8}{3}-\frac{5}{2}=\frac{2}{3}x
Multiply \frac{3}{2} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{12}x+\frac{3}{2}\times \frac{8}{3}-\frac{5}{2}=\frac{2}{3}x
Do the multiplications in the fraction \frac{3\times 1}{2\times 6}.
\frac{1}{4}x+\frac{3}{2}\times \frac{8}{3}-\frac{5}{2}=\frac{2}{3}x
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{4}x+\frac{3\times 8}{2\times 3}-\frac{5}{2}=\frac{2}{3}x
Multiply \frac{3}{2} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}x+\frac{8}{2}-\frac{5}{2}=\frac{2}{3}x
Cancel out 3 in both numerator and denominator.
\frac{1}{4}x+4-\frac{5}{2}=\frac{2}{3}x
Divide 8 by 2 to get 4.
\frac{1}{4}x+\frac{8}{2}-\frac{5}{2}=\frac{2}{3}x
Convert 4 to fraction \frac{8}{2}.
\frac{1}{4}x+\frac{8-5}{2}=\frac{2}{3}x
Since \frac{8}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}x+\frac{3}{2}=\frac{2}{3}x
Subtract 5 from 8 to get 3.
\frac{1}{4}x+\frac{3}{2}-\frac{2}{3}x=0
Subtract \frac{2}{3}x from both sides.
-\frac{5}{12}x+\frac{3}{2}=0
Combine \frac{1}{4}x and -\frac{2}{3}x to get -\frac{5}{12}x.
-\frac{5}{12}x=-\frac{3}{2}
Subtract \frac{3}{2} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{3}{2}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
x=\frac{-3\left(-12\right)}{2\times 5}
Multiply -\frac{3}{2} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{36}{10}
Do the multiplications in the fraction \frac{-3\left(-12\right)}{2\times 5}.
x=\frac{18}{5}
Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.