Factor
\frac{\left(3x-10\right)\left(9x^{2}+30x+100\right)x^{5}}{1125}
Evaluate
\frac{3x^{8}}{125}-\frac{8x^{5}}{9}
Graph
Share
Copied to clipboard
\frac{27x^{8}-1000x^{5}}{1125}
Factor out \frac{1}{1125}.
x^{5}\left(27x^{3}-1000\right)
Consider 27x^{8}-1000x^{5}. Factor out x^{5}.
\left(3x-10\right)\left(9x^{2}+30x+100\right)
Consider 27x^{3}-1000. Rewrite 27x^{3}-1000 as \left(3x\right)^{3}-10^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\frac{x^{5}\left(3x-10\right)\left(9x^{2}+30x+100\right)}{1125}
Rewrite the complete factored expression. Polynomial 9x^{2}+30x+100 is not factored since it does not have any rational roots.
\frac{3}{125}x^{8}-\frac{8}{9}x^{5}
Reduce the fraction \frac{24}{27} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}